Direct effects of acute hypoxia on the reactivity of peripheral arteries of the chicken embryo

2002 ◽  
Vol 283 (2) ◽  
pp. R331-R338 ◽  
Author(s):  
K. Ruijtenbeek ◽  
C. G. A. Kessels ◽  
E. Villamor ◽  
C. E. Blanco ◽  
J. G. R. De Mey

In the chicken embryo, acute hypoxemia results in cardiovascular responses, including an increased peripheral resistance. We investigated whether local direct effects of decreased oxygen tension might participate in the arterial response to hypoxemia in the chicken embryo. Femoral arteries of chicken embryos were isolated at 0.9 of incubation time, and the effects of acute hypoxia on contraction and relaxation were determined in vitro. While hypoxia reduced contraction induced by high K+ to a small extent (−21.8 ± 5.7%), contractile responses to exogenous norepinephrine (NE) were markedly reduced (−51.1 ± 3.2%) in 80% of the arterial segments. This effect of hypoxia was not altered by removal of the endothelium, inhibition of NO synthase or cyclooxygenase, or by depolarization plus Ca2+ channel blockade. When arteries were simultaneously exposed to NE and ACh, hypoxia resulted in contraction (+49.8 ± 9.3%). Also, relaxing responses to ACh were abolished during acute hypoxia, while the vessels became more sensitive to the relaxing effect of the NO donor sodium nitroprusside (pD2: 5.81 ± 0.21 vs. 5.31 ± 0.27). Thus, in chicken embryo femoral arteries, acute hypoxia blunts agonist-induced contraction of the smooth muscle and inhibits stimulated endothelium-derived relaxation factor release. The consequences of this for in vivo fetal hemodynamics during acute hypoxemia depend on the balance between vasomotor influences of circulating catecholamines and those of the endothelium.

1996 ◽  
Vol 44 (2) ◽  
pp. 91-101 ◽  
Author(s):  
A K Berfield ◽  
G J Raugi ◽  
C K Abrass

Mesangial cells (MCs) grown without supplemental insulin (SI-MCs) express a quiescent phenotype and extracellular matrix (ECM) composition similar to MCs in vivo. In contrast, MCs routinely propagated in insulin (SI+MCs) are stimulated to proliferate, change their phenotype, and produce large amounts of collagens I and III. These effects of insulin may in part be mediated through cytoskeletal rearrangement. Differences in cytoskeletal arrangement were compared between SI-MCs and SI+MCs and 1 hr after addition of insulin (1 nM) or IGF-1 (100 nM) to SI-MCs. Cells were examined by light microscopy, electron microscopy, and immunostaining for specific cytoskeletal proteins and fibronectin. Insulin induced rapid rearrangement of stress fibers. Surface ruffling, actin aggregation, vimentin retraction, rearrangement of vinculin in focal adhesions, and fibronectin extraction were apparent. These direct effects of insulin on the SI-MC cytoskeleton occurred before insulin-induced changes in ECM composition. IGF-I induced cytoskeletal reorganization distinct from insulin. These observations demonstrate that insulin and IGF-I have unique effects on the MC cytoskeleton, which is turn may mediate secondary ligand effects on MCs.


Author(s):  
Rui Xiao ◽  
Shengquan Luo ◽  
Ting Zhang ◽  
Yankai Lv ◽  
Tao Wang ◽  
...  

Activation of the CaSR (extracellular calcium-sensing receptor) has been recognized as a critical mediator of hypoxia-induced pulmonary hypertension. Preventive targeting of the early initiating phase as well as downstream events after CaSR activation remains unexplored. As a representative of the G protein-coupled receptor family, CaSR polymerizes on cell surface upon stimulation. Immunoblotting together with MAL-PEG technique identified a reactive oxygen species-sensitive CaSR polymerization through its extracellular domain in pulmonary artery smooth muscle cells upon exposure to acute hypoxia. Fluorescence resonance energy transfer screening employing blocking peptides determined that cycteine129/131 residues in the extracellular domain of CaSR formed intermolecular disulfide bonds to promote CaSR polymerization. The monitoring of intracellular Ca 2+ signal highlighted the pivotal role of CaSR polymerization in its activation. In contrast, the blockade of disulfide bonds formation using a peptide decreased both CaSR and hypoxia-induced mitogenic factor expression as well as other hypoxic-related genes in vitro and in vivo and attenuated pulmonary hypertension development in rats. The blocking peptide did not affect systemic arterial oxygenation in vivo but inhibited acute hypoxia-induced pulmonary vasoconstriction. Pharmacokinetic analyses revealed a more efficient lung delivery of peptide by inhaled nebulizer compared to intravenous injection. In addition, the blocking peptide did not affect systemic arterial pressure, body weight, left ventricular function, liver, or kidney function or plasma Ca 2+ level. In conclusion, a peptide blocking CaSR polymerization reduces its hypoxia-induced activation and downstream events leading to pulmonary hypertension and represents an attractive inhaled preventive alternative worthy of further development.


2004 ◽  
Vol 286 (6) ◽  
pp. H2089-H2095 ◽  
Author(s):  
Brian B. Roman ◽  
Paul H. Goldspink ◽  
Elyse Spaite ◽  
Dalia Urboniene ◽  
Ron McKinney ◽  
...  

Protein kinase C (PKC) modulates cardiomyocyte function by phosphorylation of intracellular targets including myofilament proteins. Data generated from studies on in vitro heart preparations indicate that PKC phosphorylation of troponin I (TnI), primarily via PKC-ε, may slow the rates of cardiac contraction and relaxation (+dP/d t and −dP/d t). To explore this issue in vivo, we employed transgenic mice [mutant TnI (mTnI) mice] in which the major PKC phosphorylation sites on cardiac TnI were mutated by alanine substitutions for Ser43 and Ser45 and studied in situ hemodynamics at baseline and increased inotropy. Hearts from mTnI mice exhibited increased contractility, as shown by a 30% greater +dP/dt and 18% greater −dP/d t than FVB hearts, and had a negligible response to isoproterenol compared with FVB mice, in which +dP/d t increased by 33% and −dP/d t increased by 26%. Treatment with phenylephrine and propranolol gave a similar result; FVB mouse hearts demonstrated a 20% increase in developed pressure, whereas mTnI mice showed no response. Back phosphorylation of TnI from mTnI hearts demonstrated that the mutation of the PKC sites was associated with an enhanced PKA-dependent phosphorylation independent of a change in basal cAMP levels. Our results demonstrate the important role that PKC-dependent phosphorylation of TnI has on the modulation of cardiac function under basal as well as augmented states and indicate interdependence of the phosphorylation sites of TnI in hearts beating in situ.


1979 ◽  
Vol 236 (3) ◽  
pp. H508-H512 ◽  
Author(s):  
C. A. Astley ◽  
A. R. Hohimer ◽  
R. B. Stephenson ◽  
O. A. Smith ◽  
F. A. Spelman

Twenty-three electromagnetic flow transducers with lumen diameters of 3.5-6.0 mm were implanted in rhesus monkeys and baboonss for 12 h to 120 days. Each flow transducer was calibrated 1) in vitro on dialysis tubing with saline before implantation, 2) in vivo the last day of the implant period, and 3) again in vitro after the flow transducer was recovered. Three other flow transducers were implanted on femoral arteries of baboon just central to an arteriovenous Silastic shunt, and were calibrated in vivo daily for 23-47 days. In vitro sensitivity was not affected by implant durations of up to 120 days. In vivo sensitivity fluctuated unpredictably for the first 3-4 wk of implant, after which it followed a systematic course that depended on the lumen size. In vivo sensitivity at any time during implant (after the initial period) could be accurately predicted by knowing either the in vitro sensitivity or the terminal in vivo sensitivity.


1983 ◽  
Vol 58 (3) ◽  
pp. 356-361 ◽  
Author(s):  
Michael P. McIlhany ◽  
Lydia M. Johns ◽  
Thomas Leipzig ◽  
Nicholas J. Patronas ◽  
Frederick D. Brown ◽  
...  

✓ Partially purified protein from washed and artificially hemolyzed erythrocytes, known to cause significant contractions of isolated canine cerebral vessels in vitro, was injected into the cisterna magna of intact anesthetized dogs. Cerebral blood flow, measured by the xenon-133 washout technique, decreased from a control value of 49.5 ± 1.17 ml/100 gm/min to an experimental value of 34.1 ± 1.65 ml/100 gm/min at 2 hours. Cerebral vascular resistance rose from a control value of 2.05 ± 0.17 PRU (peripheral resistance units) to an experimental value of 2.91 ± 0.25 PRU at 2 hours. Mean arterial blood pressure, heart rate, intracranial pressure, and cerebral perfusion pressure remained stable. Cardiac output also fell significantly (in 2-hour control animals it was 2.89 ± 0.37 liter/min, and in 2-hour experimental animals 1.43 ± 0.13 liter/min) and peripheral vascular resistance rose. These changes were evident by 10 minutes after the cisternal injection of the hemolysate protein, and remained for the duration of the 2-hour monitoring period. Serial vertebrobasilar angiograms demonstrated marked narrowing of the intracranial basilar artery when compared to control values. The narrowing persisted for several days in most animals, and tended to increase with time. Relaxation occurred by the 10th through the 14th day. The authors conclude that this experimental preparation may be a useful model for both in vitro and in vivo investigation of chronic cerebral vasospasm.


1987 ◽  
Vol 7 (3) ◽  
pp. 1139-1147
Author(s):  
J W Ryder ◽  
J A Gordon

We have compared the tyrosine kinase activity of pp60c-src isolated from intact chicken embryo fibroblasts treated with micromolar sodium orthovanadate for 4 h and from untreated cells. We found an approximate 50% reduction in both autophosphorylation of pp60c-src and phosphorylation of casein when examined in the immune complex kinase assay. The reduction of in vitro enzymatic activity correlated with a vanadate-induced increase in in vivo phosphorylation of pp60c-src at the major site of tyrosine phosphorylation in the carboxyl-terminal half of the molecule and at serine in the amino-terminal half of the molecule. Our observations in vivo and those of Courtneidge in vitro (EMBO J. 4:1471-1477, 1985) suggest that vanadate may enhance a cellular regulatory mechanism that inhibits the activity of pp60c-src in normal cells. A likely candidate for this mechanism is phosphorylation at a tyrosine residue distinct from tyrosine 416, probably tyrosine 527 in the carboxyl-terminal sequence of amino acids unique to pp60c-src. The regulatory role, if any, of serine phosphorylation in pp60c-src remains unclear. The 36-kilodalton phosphoprotein, a substrate of pp60v-src, showed a significant phosphorylation at tyrosine after treatment of normal chicken embryo fibroblasts with vanadate. Assuming that pp60c-src is inhibited intracellularly by vanadate, either another tyrosine kinase is stimulated by vanadate (e.g., a growth factor receptor) or the 36-kilodalton phosphoprotein in normal cells is no longer rapidly dephosphorylated by a tyrosine phosphatase in the presence of vanadate.


2001 ◽  
Vol 280 (6) ◽  
pp. R1815-R1822 ◽  
Author(s):  
Javier E. Stern ◽  
Mike Ludwig

To study modulatory actions of nitric oxide (NO) on GABAergic synaptic activity in hypothalamic magnocellular neurons in the supraoptic nucleus (SON), in vitro and in vivo electrophysiological recordings were obtained from identified oxytocin and vasopressin neurons. Whole cell patch-clamp recordings were obtained in vitro from immunochemically identified oxytocin and vasopressin neurons. GABAergic synaptic activity was assessed in vitro by measuring GABAA miniature inhibitory postsynaptic currents (mIPSCs). The NO donor and precursor sodium nitroprusside (SNP) and l-arginine, respectively, increased the frequency and amplitude of GABAA mIPSCs in both cell types ( P ≤ 0.001). Retrodialysis of SNP (50 mM) onto the SON in vivo inhibited the activity of both neuronal types ( P ≤ 0.002), an effect that was reduced by retrodialysis of the GABAA-receptor antagonist bicuculline (2 mM, P≤ 0.001). Neurons activated by intravenous infusion of 2 M NaCl were still strongly inhibited by SNP. These results suggest that NO inhibition of neuronal excitability in oxytocin and vasopressin neurons involves pre- and postsynaptic potentiation of GABAergic synaptic activity in the SON.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3630-3636 ◽  
Author(s):  
David H. Lee ◽  
Leslie Bardossy ◽  
Nichole Peterson ◽  
Morris A. Blajchman

Abstract Several different preparations of cross-linked hemoglobin (CLHb) are being evaluated for their efficacy and safety as red cell substitutes in a variety of preclinical and clinical settings. Because CLHb is known to sequester nitric oxide (NO) and inhibit NO-mediated processes, we hypothesized that CLHb would have a hemostatic effect by enhancing platelet reactivity, inducing vasoconstriction, or both. Infusion of o-raffinose CLHb shortened the prolonged microvascular bleeding time and decreased blood loss from ear incisions in rabbits rendered anemic and thrombocytopenic. Moreover, this hemostatic effect persisted for at least 24 hours after infusion. Phenylephrine induced a degree of vasoconstriction similar to that induced by CLHb but did not shorten the bleeding time or decrease blood loss, suggesting that vasoconstriction alone cannot account for the hemostatic effect of CLHb. There was no evidence of CLHb-induced activation of coagulation in vivo, since infusion of CLHb did not increase circulating levels of thrombin-antithrombin complex. In vitro, CLHb abolished the inhibitory effect of the NO donor 3-morpholinosydnonimine on platelet aggregation and enhanced the aggregation of stimulated but not resting platelets. This potentiating effect was not attenuated by the addition of superoxide dismutase or catalase. To evaluate the potential arterial thrombogenicity of CLHb, a model of carotid artery thrombosis was developed in rabbits without thrombocytopenia or anemia. Compared with albumin infusion, CLHb infusion shortened the time to complete carotid occlusion. These data suggest that CLHb may shift the thromboregulatory balance toward clot formation, resulting in decreased bleeding in anemic and thrombocytopenic rabbits and possibly increasing arterial thrombogenicity in normal rabbits.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 163-168 ◽  
Author(s):  
MA Doukas ◽  
EO Niskanen ◽  
PJ Quesenberry

Abstract Lithium has been recognized as a stimulator of granulopoiesis both in vivo and in vitro. The mechanism by which lithium provokes this stimulation is unclear, with previous data focusing on such divergent causes as direct effects on progenitor cells v elevations in granulocyte macrophage colony-stimulating activity (GM-CSA) production. In the present study, we used a model system of granulopoiesis in diffusion chambers to study this stimulation of granulopoiesis. Lithium pretreatment of mice followed by a rest period to allow for excretion of the lithium (confirmed by serum assays) revealed a stimulation of progenitor cell growth within the diffusion chambers. No changes in the serum and chamber fluid GM-CSA levels were discernible between the control host mice and the lithium-pretreated mice. These data indicate that lithium stimulates granulopoiesis by an indirect mechanism that does not appear to involve GM-CSA.


Sign in / Sign up

Export Citation Format

Share Document