Brain histamine regulates pressor responses to peripheral hyperosmolality

1990 ◽  
Vol 259 (3) ◽  
pp. R507-R513 ◽  
Author(s):  
V. F. Akins ◽  
S. L. Bealer

The role of brain histamine (HA) in the pressor response to peripheral hyperosmolality was investigated in the conscious Sprague-Dawley rat. Increased mean arterial pressure was observed during a 30-min intravenous infusion of hypertonic saline (HTS; 10 microliters.100 g body wt-1 x min-1) in vehicle-treated controls (20.1 +/- 3.8 mmHg) and in animals centrally pretreated with the specific H2-antagonist, cimetidine (15.0 +/- 3.7 mmHg). However, this pressor response was abolished in a dose-dependent manner after intracerebroventricular injection of the H1 antagonist promethazine. In other experiments, brain tissue microdissected from the supraoptic nucleus (SON), paraventricular nucleus (PVN), and posterior hypothalamic region showed significantly lower levels of total tissue HA after 60 min of intravenous HTS infusion compared with tissue taken from control animals receiving an isotonic infusion. Microdialysis in the region of the PVN or SON before and during HTS infusion showed increased extracellular concentrations of HA in the SON (24.4 +/- 10.9%) during infusion. No change in extracellular HA concentration was seen in the PVN during HTS infusion. These results support the conclusion that endogenous brain HA is involved in the pressor response to peripheral hyperosmolality.

1991 ◽  
Vol 260 (1) ◽  
pp. H218-H224 ◽  
Author(s):  
V. F. Akins ◽  
S. L. Bealer

Brain histamine (HA) was depleted in conscious Sprague-Dawley rats by central administration of alpha-fluoromethyl-histidine (alpha-FMH), an irreversible inhibitor of the HA synthesizing enzyme. Isotonic or hypertonic saline was infused intravenously at 10 microliters.100 g-1.min-1 for 30 min and mean arterial pressure (MAP) and heart rate (HR) were monitored. In addition, plasma vasopressin (AVP) and norepinephrine (NE) were measured pre- and postinfusion. Animals pretreated with alpha-FMH showed a delayed and attenuated pressor response and bradycardia during hypertonic saline (HTS) infusion and a significant reduction in plasma NE levels (-29 +/- 8% below control values). However, plasma concentrations of AVP were similar in both groups. Central pretreatment with the H1-antagonist pyrilamine (PYR) also delayed the onset and significantly attenuated the pressor response to HTS infusion, and caused dose-related decreases in plasma NE concentrations (-34 +/- 8, -47 +/- 5, and -52 +/- 7% after 60, 100, and 600 nmol PYR, respectively). These data indicate a role for central HA in peripheral sympathetic activation but not as a mediator of AVP release to a peripheral hyperosmotic stimulus.


1992 ◽  
Vol 263 (2) ◽  
pp. E210-E213 ◽  
Author(s):  
Y. Shafagoj ◽  
J. Opoku ◽  
D. Qureshi ◽  
W. Regelson ◽  
M. Kalimi

Dehydroepiandrosterone (DHEA) is an endogenous steroid having a wide variety of biological and biochemical effects. In the present study, we have examined the role of DHEA on various rodent models of experimental hypertension. Sprague-Dawley rats were given subcutaneous injections of 1.5 mg dexamethasone every alternate day, resulting in an increase in systolic blood pressure within 1 wk. Interestingly, administration of a pharmacological dose of 1.5, 3, or 7.5 mg DHEA along with dexamethasone prevented dexamethasone-induced hypertension in a dose-dependent manner. DHEA had no effect on the hypertension induced by deoxycorticosterone acetate (DOCA)-salt administration using uninephrectomized rats or on the genetic model of spontaneously hypertensive rats. Dexamethasone administration resulted in a significant weight loss in rats, which was not prevented by simultaneous administration of DHEA. These results indicate that dexamethasone-mediated weight loss may involve mechanisms separate from its hypertensive action. Dexamethasone treatment resulted in a significant decrease in food consumption that was not reversed by DHEA. It is concluded that DHEA at doses above physiological levels when given subcutaneously has no effect on DOCA-salt or a genetic model of hypertension but has a beneficial effect on dexamethasone-induced hypertension.


2000 ◽  
Vol 279 (2) ◽  
pp. R455-R460 ◽  
Author(s):  
Wieslaw Kozak ◽  
Matthew J. Kluger ◽  
Anna Kozak ◽  
Maciej Wachulec ◽  
Karol Dokladny

In previous reports, we (15, 18) and others (29) demonstrated data showing that various inhibitors of cytochrome P-450/epoxygenase augment fever in rats and mice, indicating that the enzyme may be involved in endogenous antipyresis. The aim of this study was to further test the hypothesis that the P-450-dependent epoxygenase pathway of arachidonic acid is part of the homeostatic system to control the height of fever. Sprague-Dawley rats were implanted with biotelemeters to monitor body temperature. Fever was induced by intraperitoneal injection of lipopolysaccharide (LPS; 80 μg/kg). We demonstrate that intraperitoneal administration of P-450 inducers (bezafibrate and dehydroepiandrosterone, 10 and 100 mg/kg) before LPS reduced fever in rats in a dose-dependent manner. In complementary experiments, rats were implanted with brain cannulas in addition to the biotelemeters. Various isomers of epoxyeicosanoids were administered into the lateral ventricle at doses of 0.01 to 10 μg/rat to test their influence on LPS-induced fever in rats. Four of five isomers were antipyretic in a dose-dependent manner. The most potent antipyretic isomers were 11,12-epoxyeicosatrienoic acid (EET) followed by 14,15-EET, 8,9-EET, and 12(R) hydroxyeicosatetraenoic acid. These data support the hypothesis that the cytochrome P-450/epoxygenase pathway of arachidonate metabolism is part of the endogenous antipyretic system.


2003 ◽  
Vol 284 (1) ◽  
pp. H116-H121 ◽  
Author(s):  
Zhen Li ◽  
Masaru Iwai ◽  
Lan Wu ◽  
Tetsuya Shiuchi ◽  
Toyohisa Jinno ◽  
...  

The effects of intracerebroventricular (ICV) injection of angiotensin II (ANG II) on blood pressure and water intake were examined with the use of ANG II receptor-deficient mice. ICV injection of ANG II increased systolic blood pressure in a dose-dependent manner in wild-type (WT) mice and ANG type 2 AT2 receptor null (knockout) (AT2KO) mice; however, this increase was significantly greater in AT2KO mice than in WT mice. The pressor response to a central injection of ANG II in WT mice was inhibited by ICV preinjection of the selective AT1 receptor blocker valsartan but exaggerated by the AT2 receptor blocker PD-123319. ICV injection of ANG II also increased water intake. It was partly but significantly suppressed both in AT2KO and AT1aKO mice. Water intake in AT2/AT1aKO mice did not respond to ICV injection of ANG II. Both valsartan and PD-123319 partly inhibited water intake in WT mice. These results indicate an antagonistic action between central AT1a and AT2 receptors in the regulation of blood pressure, but they act synergistically in the regulation of water intake induced by ANG II.


1992 ◽  
Vol 262 (6) ◽  
pp. F1068-F1075 ◽  
Author(s):  
L. L. Jensen ◽  
J. W. Harding ◽  
J. W. Wright

The present investigation examined the abilities of angiotensin (ANG) II and III to produce increases in blood pressure and drinking when microinfused into the paraventricular nucleus (PVN) of the hypothalamus of the Sprague-Dawley rat. Dose-dependent elevations in systemic blood pressure and heart rate were measured to both ANG II and III in the anesthetized rat, with ANG II more potent than ANG III at the two highest doses examined. Pretreatment with the specific ANG receptor antagonist [Sar1,Thr8]ANG II (sarthran), blocked subsequent ANG II- and III-induced elevations in blood pressure, suggesting that these responses were dependent on the activation of ANG receptors. A similar analysis in awake rats yielded nearly equivalent results. A final experiment demonstrated that microinfusions of ANG II and III into the PVN produced drinking in a dose-dependent manner, with greater consumption to ANG II than ANG III. Again, sarthran was found to block the dipsogenic response. Histological examination revealed that the location of the injection site was linked to the character of the ANG-dependent response. These data suggest that the PVN may play a critical role in mediating central ANG effects on body water homeostasis and blood pressure regulation. Furthermore, it appears that subnuclei of the PVN may participate differentially in ANG-mediated actions.


2019 ◽  
Vol 17 (4) ◽  
pp. 426-431
Author(s):  
Jin Xuezhu ◽  
Li Jitong ◽  
Nie Leigang ◽  
Xue Junlai

The main purpose of this study is to investigate the role of citrus leaf extract in carbon tetrachloride-induced hepatic injury and its potential molecular mechanism. Carbon tetrachloride was used to construct hepatic injury animal model. To this end, rats were randomly divided into 4 groups: control, carbon tetrachloride-treated, and two carbon tetrachloride + citrus leaf extract-treated groups. The results show that citrus leaf extract treatment significantly reversed the effects of carbon tetrachloride on the body weight changes and liver index. Besides, treatment with citrus leaf extract also reduced the levels of serum liver enzymes and oxidative stress in a dose-dependent manner. H&E staining and western blotting suggested that citrus leaf extract could repair liver histological damage by regulating AMPK and Nrf-2.


2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


1990 ◽  
Vol 123 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Xiangbing Wang ◽  
Noriyuki Sato ◽  
Monte A. Greer ◽  
Susan E. Greer ◽  
Staci McAdams

Abstract. The mechanism by which 30% medium hyposmolarity induces PRL secretion by GH4C1 cells was compared with that induced by 100 nmol/l TRH or 30 mmol/l K+. Removing medium Ca2+, blocking Ca2+ channels with 50 μmol/l verapamil, or inhibiting calmodulin activation with 20 μmol/l trifluoperazine, 10 μmol/l chlorpromazine or 10 μmol/l pimozide almost completely blocked hyposmolarity-induced secretion. The smooth muscle relaxant, W-7, which is believed relatively specific in inhibiting the Ca2+-calmodulin interaction, depressed hyposmolarity-induced PRL secretion in a dose-dependent manner (r = −0.991, p<0.01 ). The above drugs also blocked or decreased high K+-induced secretion, but had much less effect on TRH-induced secretion. Secretion induced by TRH, hyposmolarity, or high K+ was optimal at pH 7.3-7.65 and was significantly depressed at pH 6.0 or 8.0, indicating that release of hormone induced by all 3 stimuli is due to an active cell process requiring a physiologic extracellular pH and is not produced by nonspecific cell toxicity. The data suggest hyposmolarity and high K+ may share some similarities in their mechanism of stimulating secretion, which is different from that of TRH.


Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 752-762 ◽  
Author(s):  
Alireza Sameny ◽  
John Locke

Transposable elements are found in the genomes of all eukaryotes and play a critical role in altering gene expression and genome organization. In Drosophila melanogaster, transposable P elements are responsible for the phenomenon of hybrid dysgenesis. KP elements, a deletion-derivative of the complete P element, can suppress this mutagenic effect. KP elements can also silence the expression of certain other P-element-mediated transgenes in a process called P-element-dependent silencing (PDS), which is thought to involve the recruitment of heterochromatin proteins. To explore the mechanism of this silencing, we have mobilized KP elements to create a series of strains that contain single, well-defined KP insertions that show PDS. To understand the quantitative role of KP elements in PDS, these single inserts were combined in a series of crosses to obtain genotypes with zero, one, or two KP elements, from which we could examine the effect of KP gene dose. The extent of PDS in these genotypes was shown to be dose dependent in a logarithmic rather than linear fashion. A logarithmic dose dependency is consistent with the KP products interacting with heterochromatic proteins in a concentration-dependent manner such that two molecules are needed to induce gene silencing.


2021 ◽  
Vol 17 ◽  
Author(s):  
Gideon Ayeni ◽  
Mthokozisi Blessing Cedric Simelane ◽  
Shahidul Islam ◽  
Ofentse Jacob Pooe

Background: Medicinal plants together with their isolated bioactive compounds are known for their antioxidant properties which constitute therapeutic agents that are routinely employed in the treatment of liver diseases. Aims of the Study: The current study sought to explore the protective role of Warburgia salutaris and its isolated compound, iso-mukaadial acetate against carbon tetrachloride (CCl4)-induced hepatic injury. Methods: Thirty-five male Sprague Dawley rats were divided into seven groups of five animals each and injected with CCl4 to induce hepatic injury. Results: Treatment with the crude extract of W. salutaris and of iso-mukaadial acetate significantly reduced the levels of alkaline phosphatase, alanine and aspartate aminotransaminases, total bilirubin and malondialdehyde in a dose dependent manner, when compared to untreated groups. Liver histology revealed a reduction in hepatic necrosis and inflammation. Conclusion: The current investigation has demonstrated that W. salutaris extract and iso-mukaadial acetate could mitigate the acute liver injury inflicted by a hepatotoxic inducer in rats.


Sign in / Sign up

Export Citation Format

Share Document