Comparison between effects of interleukin-1 alpha administration and sublethal endotoxemia in primates

1991 ◽  
Vol 261 (2) ◽  
pp. R442-R452 ◽  
Author(s):  
E. Fischer ◽  
M. A. Marano ◽  
A. E. Barber ◽  
A. Hudson ◽  
K. Lee ◽  
...  

Interleukin (IL)-1 is an early mediator of host response to inflammation, although its contribution to individual components of the acute phase reaction is still unclear. To evaluate how the hemodynamic, metabolic, and hormonal responses to sublethal endotoxemia compare with IL-1 administration, baboons received intravenously either lipopolysaccharide (LPS) or 0.1, 10, or 100 micrograms/kg IL-1 alpha. LPS induced an early tachycardia and a fall in mean arterial pressure, as well as lacticacidemia and hypoaminoacidemia. Similar hemodynamic and metabolic changes were seen with 10 or 100 micrograms/kg of IL-1 alpha. An increase in adrenocorticotropic hormone and fall in serum iron were induced by IL-1 alpha but not by LPS. Plasma tumor necrosis factor-alpha (TNF-alpha) was not measurable after IL-1 alpha administration, whereas LPS induced a monophasic TNF-alpha response. IL-6 levels were significantly greater after LPS than IL-1 alpha administration. Histopathological lesions, similar in LPS- and 100 micrograms/kg IL-1 alpha-treated groups, were present only in the adrenal cortex. We conclude that many, but not all, of the effects of sublethal endotoxemia can be replicated by IL-1 alpha administration, and these responses are dose dependent.

1994 ◽  
Vol 14 (10) ◽  
pp. 6561-6569
Author(s):  
L Klampfer ◽  
T H Lee ◽  
W Hsu ◽  
J Vilcek ◽  
S Chen-Kiang

Tumor necrosis factor alpha (TNF-alpha) and interleukin-1 (IL-1) activate transcription of the TSG-6 gene in normal human fibroblasts through a promoter region (-165 to -58) that encompasses an AP-1 and a NF-IL6 site. We show by deletion analysis and substitution mutagenesis that both sites are necessary for activation by TNF-alpha. Activation by IL-1 requires the NF-IL6 site and is enhanced by the AP-1 site. These results suggest that the NF-IL6 and AP-1 family transcription factors functionally cooperate to mediate TNF-alpha and IL-1 signals. Consistent with this possibility, IL-1 and TNF-alpha markedly increase the binding of Fos and Jun to the AP-1 site, and NF-IL6 activates the native TSG-6 promoter. Activation by NF-IL6 requires an intact NF-IL6 site and is modulated by the ratio of activator to inhibitor NF-IL6 isoforms that are translated from different in-frame AUGs. However, the inhibitor isoform can also bind to the AP-1 site and repress AP-1 site-mediated transcription. The finding that the inhibitor isoform antagonizes activation of the native TSG-6 promoter by IL-1 and TNF-alpha suggests that NF-IL6 has a physiologic role in these cytokine responses. Thus, the functionally distinct NF-IL6 isoforms cooperate with Fos and Jun to positively and negatively regulate the native TSG-6 promoter by TNF-alpha and IL-1.


1991 ◽  
Vol 261 (4) ◽  
pp. L315-L321 ◽  
Author(s):  
J. N. Allen ◽  
D. J. Herzyk ◽  
M. D. Wewers

To study the role of microtubules in cytokine production, the effect of the microtubule depolymerizing agent colchicine on lipopolysaccharide endotoxin (LPS)-induced interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) release by blood monocytes and alveolar macrophages were examined. Immunofluorescence microscopy demonstrated that LPS resulted in the appearance of microtubule-containing cytoplasmic appendages and that colchicine, which resulted in microtubule disruption in monocytes, blocked appendage formation. Colchicine resulted in approximately 50% increase in LPS-induced IL-1 beta release and a 50% decrease in LPS-induced TNF-alpha release by human monocytes at all doses of LPS tested. Although colchicine resulted in a statistically significant increase in LPS-stimulated human alveolar macrophage IL-1 beta release, the increase was not as great as that observed with monocytes. Northern blot analysis suggested that the colchicine effect occurs pretranslationally because colchicine caused an increase in LPS-stimulated IL-1 beta mRNA levels and a decrease in TNF-alpha mRNA levels. These results suggest that microtubules contribute to the regulation of endotoxin-stimulated mononuclear phagocyte cytokine production and that this regulation differs significantly between IL-1 beta and TNF-alpha.


1991 ◽  
Vol 173 (3) ◽  
pp. 699-703 ◽  
Author(s):  
E P Sampaio ◽  
E N Sarno ◽  
R Galilly ◽  
Z A Cohn ◽  
G Kaplan

Thalidomide selectively inhibits the production of human monocyte tumor necrosis factor alpha (TNF-alpha) when these cells are triggered with lipopolysaccharide and other agonists in culture. 40% inhibition occurs at the clinically achievable dose of the drug of 1 micrograms/ml. In contrast, the amount of total protein and individual proteins labeled with [35S]methionine and expressed on SDS-PAGE are not influenced. The amounts of interleukin 1 beta (IL-1 beta), IL-6, and granulocyte/macrophage colony-stimulating factor produced by monocytes remain unaltered. The selectivity of this drug may be useful in determining the role of TNF-alpha in vivo and modulating its toxic effects in a clinical setting.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3337-3343 ◽  
Author(s):  
JB Weinberg ◽  
SN Mason ◽  
TS Wortham

We have previously noted that the glutamine antagonist acivicin (alpha S,5S-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid) induces monocytoid differentiation of freshly isolated human myeloid leukemia cells and cells of the myeloid leukemia cell line HL-60, and that the differentiation is accompanied by increases in expression of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). Because we also showed that TNF-alpha and IL-1 beta can act synergistically to cause monocytoid differentiation of HL-60 cells, we hypothesized that acivicin-induced TNF-alpha and IL-1 beta, in an autocrine manner, caused the differentiation. The purpose of the present study was to determine the causal roles of TNF-alpha and IL-1 beta in the acivicin-induced differentiation of HL-60 cells by the use of dexamethasone (DEX) and pentoxifylline (PTX), two drugs that effectively inhibit expression of TNF-alpha and IL-1 beta. Acivicin caused a monocytoid differentiation of the cells as manifest by diminished cell growth, morphologic maturation of the cells, increased ability to generate hydrogen peroxide in response to acute treatment with phorbol myristate acetate, and increased expression of nonspecific esterase and the surface antigens CD14 and CD11b. Acivicin treatment also caused the cells to have diminished steady-state expression of messenger RNA (mRNA) for c-myc and c-myb, and increased expression of mRNA for TNF-alpha and IL-1 beta. DEX and PTX did not alter cell growth, and did not block the acivicin-induced block in growth. PTX caused a slight increase in nonspecific esterase expression, but DEX had no effect on this, and neither drug diminished the acivicin-induced increase in nonspecific esterase. Although neither drug alone lessened the acivicin enhancement of hydrogen peroxide production, DEX and PTX together reduced this. DEX did not modify the acivicin-induced morphologic maturation of the cells, but PTX alone or PTX with DEX potentiated the acivicin-induced increase in mature cells. Basal CD14 and CD11b expression were slightly reduced by DEX and PTX, but neither drug modified the acivicin-induced increases. DEX and PTX reduced the acivicin-induced increases in TNF-alpha and IL-1 beta mRNA expression, but they had little or no effect on the acivicin-induced decreases in expression of mRNA for c-myc and c-myb. Thus, DEX and PTX effectively block the acivicin-induced expression of TNF-alpha and IL-1 beta, but they have little influence on the acivicin-induced differentiation process.(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3337-3343 ◽  
Author(s):  
JB Weinberg ◽  
SN Mason ◽  
TS Wortham

Abstract We have previously noted that the glutamine antagonist acivicin (alpha S,5S-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid) induces monocytoid differentiation of freshly isolated human myeloid leukemia cells and cells of the myeloid leukemia cell line HL-60, and that the differentiation is accompanied by increases in expression of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). Because we also showed that TNF-alpha and IL-1 beta can act synergistically to cause monocytoid differentiation of HL-60 cells, we hypothesized that acivicin-induced TNF-alpha and IL-1 beta, in an autocrine manner, caused the differentiation. The purpose of the present study was to determine the causal roles of TNF-alpha and IL-1 beta in the acivicin-induced differentiation of HL-60 cells by the use of dexamethasone (DEX) and pentoxifylline (PTX), two drugs that effectively inhibit expression of TNF-alpha and IL-1 beta. Acivicin caused a monocytoid differentiation of the cells as manifest by diminished cell growth, morphologic maturation of the cells, increased ability to generate hydrogen peroxide in response to acute treatment with phorbol myristate acetate, and increased expression of nonspecific esterase and the surface antigens CD14 and CD11b. Acivicin treatment also caused the cells to have diminished steady-state expression of messenger RNA (mRNA) for c-myc and c-myb, and increased expression of mRNA for TNF-alpha and IL-1 beta. DEX and PTX did not alter cell growth, and did not block the acivicin-induced block in growth. PTX caused a slight increase in nonspecific esterase expression, but DEX had no effect on this, and neither drug diminished the acivicin-induced increase in nonspecific esterase. Although neither drug alone lessened the acivicin enhancement of hydrogen peroxide production, DEX and PTX together reduced this. DEX did not modify the acivicin-induced morphologic maturation of the cells, but PTX alone or PTX with DEX potentiated the acivicin-induced increase in mature cells. Basal CD14 and CD11b expression were slightly reduced by DEX and PTX, but neither drug modified the acivicin-induced increases. DEX and PTX reduced the acivicin-induced increases in TNF-alpha and IL-1 beta mRNA expression, but they had little or no effect on the acivicin-induced decreases in expression of mRNA for c-myc and c-myb. Thus, DEX and PTX effectively block the acivicin-induced expression of TNF-alpha and IL-1 beta, but they have little influence on the acivicin-induced differentiation process.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 261 (5) ◽  
pp. F792-F798 ◽  
Author(s):  
P. Steiner ◽  
J. Pfeilschifter ◽  
C. Boeckh ◽  
H. Radeke ◽  
U. Otten

Recent evidence indicates that cytokines are potent inducers of nerve growth factor (NGF) expression both in peripheral tissues and the central nervous system and that NGF, in addition to its neurotrophic action, also acts as an immunoregulatory agent. It was of interest to investigate whether inflammatory cytokines affect NGF production in renal mesangial cells, which play a crucial role in the modulation of the local immune function in the glomerulus. Our results show that the simultaneous addition of interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) elicited a marked (13-fold) increase of NGF protein released by cultured rat glomerular mesangial cells within 24 h, whereas IL-1 alpha in combination with TNF-alpha, as well as the cytokines alone, did not promote the synthesis of NGF. The synergistic effect was dose dependent (maximal at 1 nM) and due to enhanced gene expression, since the cytokine treatment caused a fivefold increase in NGF mRNA after 8 h. Stimulation of NGF synthesis was abolished by mepacrine and dexamethasone, indicating that phospholipase A2 may be involved in NGF regulation. Moreover, pretreatment of the cells with the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) abolished induction of NGF by cytokines; in contrast, the specific cyclooxygenase inhibitors indomethacin and diclofenac failed to modify NGF production. These data suggest that a lipoxygenase metabolite produced in response to IL-1 beta and TNF-alpha acts as a mediator in NGF gene expression. In conclusion, these findings support a model in which a cytokine cascade including NGF may play an important role in the pathophysiology of inflammatory renal diseases.


1991 ◽  
Vol 174 (6) ◽  
pp. 1355-1362 ◽  
Author(s):  
A Walz ◽  
R Burgener ◽  
B Car ◽  
M Baggiolini ◽  
S L Kunkel ◽  
...  

A new neutrophil-activating peptide, termed ENA-78, was identified in the conditioned media of stimulated human type II epithelial cell line A549. In response to stimulation with either interleukin 1 beta (IL-1 beta) or tumor necrosis factor alpha (TNF-alpha), ENA-78 was produced and secreted concomitantly with IL-8, GRO alpha, and GRO gamma. ENA-78 consists of 78 amino acids [sequence; see text] and has a molecular weight of 8,357. It has four cysteines positioned identically to those of IL-8 and analogues, and thus belongs to the CXC family of peptides. ENA-78 is related to neutrophil-activating peptide 2 (NAP-2) and GRO alpha (sequence identity, 53% and 52%, respectively) and IL-8 (22% identity). Like NAP-2 and GRO alpha, ENA-78 stimulates neutrophils, inducing chemotaxis, a rise in intracellular free calcium and exocytosis. Cross-desensitization experiments indicate that ENA-78 acts through the same type of receptors as IL-8, NAP-2, and GRO alpha.


Blood ◽  
1992 ◽  
Vol 80 (7) ◽  
pp. 1702-1709
Author(s):  
CQ Wang ◽  
KB Udupa ◽  
DA Lipschitz

Depletion of macrophages from murine marrow by the use of a monoclonal anti-macrophage antibody resulted in a significant increase in the number of erythroid burst forming units (BFU-E). This increase could be neutralized by the addition back to culture of macrophages or macrophage conditioned medium indicating that the suppression was mediated by soluble factors. To further characterize this effect, the addition to culture, either alone or in combination, of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), and granulocyte-macrophage colony-stimulating factor (GM-CSF) on the growth of BFU-E and the colony-forming unit granulocyte-macrophage (CFU-GM) was examined in macrophage-containing and macrophage-depleted cultures. The addition of IL-1 alpha to culture stimulated the release of both TNF alpha and GM-CSF and acted synergistically with both cytokines, resulting in a dose-dependent suppression of BFU-E and stimulation of CFU-GM growth. The increase in CFU-GM caused by the addition of IL-1 alpha was mediated by GM-CSF but not by TNF alpha as the increase was prevented by the addition of a monoclonal anti-GM-CSF antibody but not by anti-TNF alpha. When either TNF alpha or GM-CSF was neutralized by monoclonal antibodies the addition of IL-1 alpha resulted in a significant increase in BFU-E growth. The addition of GM-CSF to culture caused a dose-dependent suppression of BFU-E that was mediated by TNF alpha, as colony number was not reduced when GM-CSF and a monoclonal anti-TNF alpha antibody were simultaneously added to culture. TNF alpha- induced suppression of BFU-E only occurred in the presence of macrophages. In macrophage-depleted cultures, a dose-dependent suppression of BFU-E could be induced if subinhibitory concentrations of IL-1 alpha or GM-CSF were simultaneously added with increasing concentrations of TNF alpha. The effects of IL-1 alpha or GM-CSF and TNF alpha were markedly synergistic so that the doses required to induce suppression when added simultaneously was only 10% of that required when either were added to culture alone. Suppression of BFU-E by GM-CSF or the combined addition of GM-CSF and TNF alpha did not require IL-1 alpha because inhibition was not neutralized by the addition of anti-IL-1 alpha antibody.


Sign in / Sign up

Export Citation Format

Share Document