Angiotensin II and bladder obstruction in the rat: influence on hypertrophic growth and contractility

1996 ◽  
Vol 271 (5) ◽  
pp. R1186-R1192 ◽  
Author(s):  
K. Persson ◽  
R. K. Pandita ◽  
K. Waldeck ◽  
K. E. Andersson

The mechanisms and mediators of hypertrophic growth secondary to infravesical urinary outflow obstruction are unknown. The renin-angiotensin system has been implicated in vascular and cardiac hypertrophy, but the involvement of angiotensin II (ANG II) as a trophic factor in the lower urinary tract has not been investigated. In this study, the ANG II subtype AT1 receptor antagonist losartan (DuP 753) was administered perorally (15 mg.kg-1.day-1) for 28 days to rats subjected to partial urethral obstruction or sham surgery. Partial urethral obstruction caused a 3.5-fold increase in bladder weight and a 3-fold increase in bladder protein content compared with sham rats. However, no difference was observed in bladder weight or bladder protein content between losartan-treated rats and rats receiving no drug. Cystometric evaluation of bladder function revealed significant increases in micturition volume, bladder capacity, bladder compliance, and spontaneous contractile activity in rats subjected to partial urethral obstruction compared with sham rats. However, bladder function in rats treated with losartan was not different from bladder function in rats receiving no drug. In vitro studies of isolated bladder tissue showed a weak contractile response to ANG II (1 microM) that amounted to 4.4 +/- 1.0% of the response to K+ (124 mM). The ANG II-induced contraction was abolished by losartan (10 microM) and indomethacin (10 microM). The contractile response to ANG II (1 microM), K+ (124 mM), and transmural nerve stimulation (2 Hz) was reduced in bladder strips from obstructed rats. In conclusion, no evidence was found for involvement of ANG II in development of bladder hypertrophy. The effect of ANG II on bladder smooth muscle tone was minor but was mediated by stimulation of the AT1 subtype receptor.

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Gopi Venkatachalam ◽  
Umadevi Subramanian ◽  
Parthasarathy Arumugam ◽  
Elangovan Vellaichamy

Atrial natriuretic peptide (ANP) exerts local anti-hypertrophic activity in heart tissue by binding to natriuretic peptide receptor (NPR)-A. However, patients with cardiac hypertrophy and congestive heart failure have elevated plasma and tissue levels of ANP and brain natriuretic peptide (BNP) along with Angiotensin II (Ang II). However, the rationale behind the impaired action of ANP in diseased state is not well understood. In this study, we sought to examine the signaling mechanism by which Ang II modulates local anti-hypertrophic effect through inhibition of Npr1 gene, which codes for NPR-A, in the heart. Hence, in vivo , Wistar male rats (n=8/group) were administered suppressor dose of Ang II (50ng/kg/min) for 14 days through implanted mini-osmotic pumps. Also, in vitro , H9C2 (2-1) cardio myofibroblast cells were exposed to Ang II (10 -7 M) for 20 hours. Upon treatment with Ang II, the mRNA and protein expression of Npr1 (p<0.01) was decreased with significant increase in expression of AT1R (p<0.01) in the heart tissues. In addition, a concomitant decrease in cGMP activity and production in isolated heart tissue membrane preparation was found in Ang II infused rats. Moreover, Ang II infusion causes a suppression of MKP-1 phosphatase; while enhancing the phosphorylation of ERK1/2 (p<0.01) and NF-κB (p<0.01) proteins. Similarly, H9C2 cells exhibited the hypertrophic growth with increased expression of AT1R and activation of ERK1/2 proteins on stimulation with Ang II. Furthermore, gene silencing using siRNA-NPR-A prior to Ang II treatment augmented the translocation of NF-κB and activation of ERK1/2 (3-fold). Whereas, pre-treatment with losartan or cGMP analog 8-Br-cGMP, an activator of cGMP-dependent protein kinases, abolished the stimulatory effects of Ang II on AT1R, NF-κB nuclear translocation and phosphorylation of MAPK, but activated the MKP-1 phosphatase. These results suggest that NPRA-cGMP signaling exerts inhibitory effects on Ang II by antagonizing the upstream signaling pathways and by activation of MKP-1 to counter-regulate NF-κB and MAPKs through cGMP dependent mechanism; thereby mediate local anti-hypertrophic activity in cardiac hypertrophy.


2006 ◽  
Vol 84 (8-9) ◽  
pp. 935-941 ◽  
Author(s):  
Baohua Wang ◽  
Jingping Ouyang ◽  
Zhengyuan Xia

Thyroid hormone-induced cardiac hypertrophy is similar to that observed in physiological hypertrophy, which is associated with high cardiac contractility and increased α-myosin heavy chain (α-MHC, the high ATPase activity isoform) expression. In contrast, angiotensin II (Ang II) induces an increase in myocardial mass with a compromised contractility accompanied by a shift from α-MHC to the fetal isoform β-MHC (the low ATPase activity isoform), which is considered as a pathological hypertrophy and inevitably leads to the development of heart failure. The present study is designed to assess the effect of thyroid hormone on angiotensin II-induced hypertrophic growth of cardiomyocytes in vitro. Cardiomyocytes were prepared from hearts of neonatal Wistar rats. The effects of Ang II and 3,3′,5-triiodo-thyronine (T3) on incorporations of [3H]-thymine and [3H]-leucine, MHC isoform mRNA expression, PKC activity, and PKC isoform protein expression were studied. Ang II enhanced [3H]-leucine incorporation, β-MHC mRNA expression, PKC activity, and PKCε expression and inhibited α-MHC mRNA expression in cardiomyocytes. T3 treatment prevented Ang II-induced increases in PKC activity, PKCε, and β-MHC mRNA overexpression and favored α-MHC mRNA expression. Thyroid hormone appears to be able to reprogram gene expression in Ang II-induced cardiac hypertrophy, and a PKC signal pathway may be involved in such remodeling process.


2012 ◽  
Vol 302 (1) ◽  
pp. R59-R67 ◽  
Author(s):  
Charles R. Rosenfeld ◽  
Kevin DeSpain ◽  
Xiao-tie Liu

The intact ovine uterine vascular bed (UVB) is sensitive to α-agonists and refractory to angiotensin II (ANG II) during pregnancy; the converse occurs in the systemic circulation. The mechanism(s) responsible for these differences in uterine sensitivity are unclear and may reflect predominance of nonconstricting AT2 receptors (AT2R) in uterine vascular smooth muscle (UVSM). The contribution of the placental vasculature also is unclear. Third generation and precaruncular/placental arteries from nonpregnant ( n = 16) and term pregnant ( n = 23) sheep were used to study contraction responses to KCl, norepinephrine (NE), and ANG II (with/without ATR specific inhibitors) and determine UVSM ATR subtype expression and contractile protein content. KCl and NE increased third generation and precaruncular/placental UVSM contractions in a dose- and pregnancy-dependent manner ( P ≤ 0.001). ANG II only elicited modest contractions in third generation pregnant UVSM ( P = 0.04) and none in precaruncular/placental UVSM. Moreover, compared with KCl and NE, ANG II contractions were diminished ≥ 5-fold. Whereas KCl and ANG II contracted third generation>>precaruncular/placental UVSM, NE-induced contractions were similar throughout the UVB. However, each agonist increased third generation contractions ≥ 2-fold at term, paralleling increased actin/myosin and cellular protein content ( P ≤ 0.01). UVSM AT1R and AT2R expression was similar throughout the UVB and unchanged during pregnancy ( P > 0.1). AT1R inhibition blocked ANG II-mediated contractions; AT2R blockade, however, did not enhance contractions. AT2R predominate throughout the UVB of nonpregnant and pregnant sheep, contributing to an inherent refractoriness to ANG II. In contrast, NE elicits enhanced contractility throughout the ovine UVB that exceeds ANG II and increases further at term pregnancy.


2015 ◽  
Vol 47 (10) ◽  
pp. 851-856 ◽  
Author(s):  
Wenhui Zhang ◽  
Yanqian Zheng ◽  
Fang Liu ◽  
Xiaofang Wang ◽  
Zhu Jin ◽  
...  

2018 ◽  
Vol 314 (3) ◽  
pp. F373-F380 ◽  
Author(s):  
Zhong Zhang ◽  
Kristie Payne ◽  
Thomas L. Pallone

tested whether rat descending vasa recta (DVR) undergo regulatory adaptations after the kidney is exposed to ischemia. Left kidneys (LK) were subjected to 30-min renal artery cross clamp. After 48 h, the postischemic LK and contralateral right kidney (RK) were harvested for study. When compared with DVR isolated from either sham-operated LK or the contralateral RK, postischemic LK DVR markedly increased their NO generation. The selective inducible NOS (iNOS) inhibitor 1400W blocked the NO response. Immunoblots from outer medullary homogenates showed a parallel 2.6-fold increase in iNOS expression ( P = 0.01). Microperfused postischemic LK DVR exposed to angiotensin II (ANG II, 10 nM), constricted less than those from the contralateral RK, and constricted more when exposed to 1400W (10 µM). Resting membrane potentials of pericytes from postischemic LK DVR pericytes were hyperpolarized relative to contralateral RK pericytes (62.0 ± 1.6 vs. 51.8 ± 2.2 mV, respectively, P < 0.05) or those from sham-operated LK (54.9 ± 2.1 mV, P < 0.05). Blockade of NO generation with 1400W did not repolarize postischemic pericytes (62.5 ± 1.4 vs. 61.1 ± 3.4 mV); however, control pericytes were hyperpolarized by exposure to NO donation from S-nitroso- N-acetyl- dl-penicillamine (51.5 ± 2.9 to 62.1 ± 1.4 mV, P < 0.05). We conclude that postischemic adaptations intrinsic to the DVR wall occur after ischemia. A rise in 1400W sensitive NO generation and iNOS expression occurs that is associated with diminished contractile responses to ANG II. Pericyte hyperpolarization occurs that is not explained by the rise in ambient NO generation within the DVR wall.


1983 ◽  
Vol 244 (5) ◽  
pp. F526-F534 ◽  
Author(s):  
R. M. Edwards

Interlobular arteries and superficial afferent and efferent arterioles were isolated from rabbit kidney, and the effects of intraluminal pressure, norepinephrine (NE), and angiotensin II (ANG II) on lumen diameter were examined. A single microvessel was dissected and one end was cannulated. The other end of the vessel was occluded and lumen diameter was measured at fixed intraluminal pressures. With step increases in intraluminal pressure over the range of 70-180 mmHg, lumen diameters of the interlobular arteries and afferent arterioles remained constant or decreased by up to 11%. In contrast, lumen diameters of efferent arterioles continued to increase as intraluminal pressure was elevated. In all three vessels NE (10(-9) to 10(-5) M) caused a dose-dependent decrease in lumen diameter. However, only the efferent arteriole responded to ANG II (10(-12) to 10(-8) M). The contractile response of the efferent arteriole to NE or ANG II was localized to the first 50-75 micrometers of the vessel as it emerged from the glomerulus. This finding suggests that smooth muscle cells are located only in this portion of the efferent arteriole. It is concluded that at least part of the autoregulation of renal blood flow can be explained by a myogenic mechanism in preglomerular vessels and that ANG II acts primarily on postglomerular segments of the rabbit renal microcirculation.


2011 ◽  
Vol 300 (4) ◽  
pp. F1008-F1016 ◽  
Author(s):  
Aaron J. Polichnowski ◽  
Limin Lu ◽  
Allen W. Cowley

The balance between angiotensin II (ANG II) and nitric oxide plays an important role in renal function and is thought to contribute to the progression of renal injury in experimental hypertension. In the present study, we investigated the extent of blood pressure (BP)-dependent and BP-independent pathways of renal injury following 2 wk of hypertension produced by intravenous infusion of ANG II (5 ng·kg−1·min−1)+ Nω-nitro-l-arginine methyl ester (l-NAME; 1.4 μg·kg−1·min−1) in male Sprague-Dawley rats. An aortic balloon occluder was positioned between the renal arteries to maintain (24 h/day) BP to the left kidney (servo-controlled) at baseline levels, whereas the right kidney (uncontrolled) was chronically exposed to elevated BP. Over the 14-day experimental protocol, the average BP to uncontrolled kidneys (152.7 ± 1.8 mmHg) was significantly elevated compared with servo-controlled (113.0 ± 0.2 mmHg) kidneys and kidneys from sham rats (108.3 ± 0.1 mmHg). ANG II+l-NAME infusion led to renal injury that was focal in nature and mainly confined to the outer medulla. Despite the differences in BP between servo-controlled and uncontrolled kidneys, there was a similar ∼3.5-fold increase in renal outer medullary tubular injury, ∼2-fold increase in outer medullary interstitial fibrosis, ∼2-fold increase in outer medullary macrophage infiltration, and a significant increase in renal oxidative stress, all of which are indicative of BP-independent mediated pathways. The results of this study have important implications regarding the pathogenesis of renal injury in various experimental models of hypertension and provide novel insights regarding the variable association observed between hypertension and renal injury in some human populations.


1990 ◽  
Vol 258 (1) ◽  
pp. H240-H246 ◽  
Author(s):  
J. L. Elghozi ◽  
G. A. Head

We have investigated the contribution of spinal noradrenergic (NA) pathways to the central pressor effects of angiotensin II (ANG II) in conscious rabbits with intact baroreceptors and after sinoaortic denervation (SAD). Very low intracisternal (ic) doses of ANG II [half maximum dose (ED50) = 6 x 10(-15) mol] produced increases in mean arterial pressure (MAP) and decreases in heart rate. Pressor responses to intracisternal ANG II were markedly reduced by 100 pmol of the ANG II antagonist [( Sar1, Ile8] ANG II, ic) and by intravenous prazosin, suggesting that central activation of ANG II receptors increased sympathetic vasoconstrictor tone. After SAD, the rabbits exhibited a 900-fold increase in sensitivity to ANG II (i.e., responded to very much lower doses, ED50 = 5 x 10(-18) mol). Intraspinal 6-hydroxydopamine (6-OHDA) injections given 1 mo earlier did not alter dose-response curves in baroreceptor-intact rabbits. However, the SAD-induced increase in sensitivity to ANG II was not observed in rabbits with depletion of spinal NA pathways. The results suggest intracisternal administration of ANG II activates two functionally distinct pathways: 1) a very sensitive site that utilizes NA projections to the spinal cord, and 2) a less sensitive site that uses non-NA descending pathways. Under normal baroreceptor input the former pressor pathway is completely inhibited. Thus the role of the central renin-angiotensin system may be of greater physiological importance in conditions where the baroreflex is suppressed.


1994 ◽  
Vol 266 (6) ◽  
pp. H2443-H2451 ◽  
Author(s):  
S. Miyata ◽  
T. Haneda

Primary cultures of neonatal cardiac myocytes were used to determine the identity of second messengers that are involved in angiotensin II (ANG II) receptor-mediated effects on cardiac hypertrophy and the type of ANG II receptor that is involved in ANG II-induced cell growth. Treatment of myocytes with ANG II significantly increased the protein-to-DNA and the RNA-to-DNA ratios. ANG II accelerated rates of protein synthesis by 24.9%. Intracellular free calcium was transiently increased after ANG II exposure. The activity of protein kinase C in particulate fractions was transiently increased after exposure to ANG II but returned to control level. The activity of protein kinase C in the cytosol was significantly decreased at all times after exposure to ANG II. After ANG II treatment, the content of c-Fos mRNA was increased. The stimulatory effects of ANG II on these parameters were inhibited by the type 1 angiotensin II receptor (AT1) antagonist, losartan. These studies demonstrate that ANG II-induced hypertrophic growth is, at least in part, mediated through AT1 receptors.


Endocrinology ◽  
2007 ◽  
Vol 148 (9) ◽  
pp. 4162-4169 ◽  
Author(s):  
Ana Kilić ◽  
Alexander Bubikat ◽  
Birgit Gaßner ◽  
Hideo A. Baba ◽  
Michaela Kuhn

The cardiac hormones atrial and brain natriuretic peptides (NPs) counteract the systemic, hypertensive, and hypervolemic actions of angiotensin II (Ang II) via their guanylyl cyclase-A (GC-A) receptor. In the present study, we took advantage of genetically modified mice with conditional, cardiomyocyte (CM)-restricted disruption of GC-A (CM GC-A knockout mice) to study whether NPs can moderate not only the endocrine but also the cardiac actions of Ang II in vivo. Fluorometric measurements of [Ca2+]i transients in isolated, electrically paced adult CMs showed that atrial NP inhibits the stimulatory effects of Ang II on free cytosolic Ca2+ transients via GC-A. Remarkably, GC-A-deficient CMs exhibited greatly enhanced [Ca2+]i responses to Ang II, which was partly related to increased activation of the Na+/H+-exchanger NHE-1. Chronic administration of Ang II to control and CM GC-A knockout mice (300 ng/kg body weight per minute via osmotic minipumps during 2 wk) provoked significant cardiac hypertrophy, which was markedly exacerbated in the later genotype. This was concomitant to increased cardiac expression of NHE-1 and enhanced activation of the Ca2+/calmodulin-dependent prohypertrophic signal transducers Ca2+/calmodulin-dependent kinase II and calcineurin. On the basis of these results, we conclude that NPs exert direct local, GC-A-mediated myocardial effects to antagonize the [Ca2+]i-dependent hypertrophic growth response to Ang II.


Sign in / Sign up

Export Citation Format

Share Document