Rhythmic multiunit neural activity in slices of hamster suprachiasmatic nucleus reflect prior photoperiod

2000 ◽  
Vol 278 (4) ◽  
pp. R987-R994 ◽  
Author(s):  
Maciej Mrugala ◽  
Piotr Zlomanczuk ◽  
Anita Jagota ◽  
William J. Schwartz

The suprachiasmatic nucleus (SCN) is an endogenous circadian pacemaker, and SCN neurons exhibit circadian rhythms of electrophysiological activity in vitro. In vivo, the functional state of the pacemaker depends on changes in day length (photoperiod), but it is not known if this property persists in SCN tissue isolated in vitro. To address this issue, we prepared brain slices from hamsters previously entrained to light-dark (LD) cycles of different photoperiods and analyzed rhythms of SCN multiunit neuronal activity using single electrodes. Rhythms in SCN slices from hamsters entrained to 8:16-, 12:12-, and 14:10-h LD cycles were characterized by peak discharge rates relatively higher during subjective day than subjective night. The mean duration of high neuronal activity was photoperiod dependent, compressed in slices from the short (8:16 and 12:12 LD) photoperiods, and decompressed (approximately doubled) in slices from the long (14:10 LD) photoperiod. In slices from all photoperiods, the mean phase of onset of high neuronal activity appeared to be anchored to subjective dawn. Our results show that the electrophysiological activity of the SCN pacemaker depends on day length, extending previous in vivo data, and demonstrate that this capacity is sustained in vitro.

1995 ◽  
Vol 268 (2) ◽  
pp. R487-R491 ◽  
Author(s):  
S. Ma ◽  
F. M. Abboud ◽  
R. B. Felder

The purpose of these studies was to determine the effects of L-arginine-derived nitric oxide (NO) synthesis on neuronal activity in solitary tract nucleus (NTS) neurons. Single unit activity was recorded extracellularly from medial NTS neurons in Fischer-344 rats in vivo and in vitro. In anesthetized rats with arterial pressure maintained constant, NG-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg iv), an inhibitor of NO synthesis, decreased the discharge rate in 12 of 14 neurons and increased the discharge rate in two. After injection of L-NAME, the slowing of neuronal activity began within 2-5 min, and maximal responses were observed 12-15 min after injection. The decreases in activity were reversed within 12-15 min with L-arginine (30 mg/kg iv) or immediately with nitroglycerin (NTG, 10-30 micrograms/kg iv). In superfused rat brain slices, the discharge rate was reduced by 1 mM L-NAME in seven neurons, increased in two, and unchanged in one. The decreases in discharge rate were reversed by 2 mM L-arginine (4 of 6 neurons) and by 10-30 microM NTG (6 of 7 neurons). The results show that L-arginine-derived NO can affect the spontaneous discharge rate of NTS neurons. We conclude that NO may influence the excitability of NTS neurons involved in central autonomic control.


1993 ◽  
Vol 70 (04) ◽  
pp. 676-680 ◽  
Author(s):  
H F Kotzé ◽  
V van Wyk ◽  
P N Badenhorst ◽  
A du P Heyns ◽  
J P Roodt ◽  
...  

SummaryPlatelets were isolated from blood of baboons and treated with neuraminidase to remove platelet membrane sialic acid, a process which artificially ages the platelets. The platelets were then labelled with 111In and their mean life span, in vivo distribution and sites of Sequestration were measured. The effect of removal of sialic acid on the attachment of immunoglobulin to platelets were investigated and related to the Sequestration of the platelets by the spleen, liver, and bone marrow. Removal of sialic acid by neuraminidase did not affect the aggregation of platelets by agonists in vitro, nor their sites of Sequestration. The removal of 0.51 (median, range 0.01 to 2.10) nmol sialic acid/108 platelets shortened their life span by 75 h (median, range 0 to 132) h (n = 19, p <0.001), and there was an exponential correlation between the shortening of the mean platelet life span and the amount of sialic acid removed. The increase in platelet-associated IgG was 0.112 (median, range 0.007 to 0.309) fg/platelet (n = 25, p <0.001) after 0.79 (median, range 0.00 to 6.70) nmol sialic acid/108 platelets was removed (p <0.001). There was an exponential correlation between the shortening of mean platelet life span after the removal of sialic acid and the increase in platelet-associated IgG. The results suggest that platelet membrane sialic acid influences ageing of circulating platelets, and that the loss of sialic acid may have exposed a senescent cell antigen that binds IgG on the platelet membrane. The antibody-antigen complex may then provide a signal to the macrophages that the platelet is old, and can be phagocytosed and destroyed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Dalal ◽  
Abdul Wahab Allaf ◽  
Hind El-Zein

AbstractSelf-nanoemulsifying drug delivery systems (SNEDDS) were used to enhance the dissolution rate of furosemide as a model for class IV drugs and the system was solidified into liquisolid tablets. SNEDDS of furosemide contained 10% Castor oil, 60% Cremophor EL, and 30% PEG 400. The mean droplets size was 17.9 ± 4.5 nm. The theoretical model was used to calculate the amounts of the carrier (Avicel PH101) and coating materials (Aerosil 200) to prepare liquisolid powder. Carrier/coating materials ratio of 5/1 was used and Ludipress was added to the solid system, thus tablets with hardness of 45 ± 2 N were obtained. Liquisolid tablets showed 2-folds increase in drug release as compared to the generic tablets after 60 min in HCl 0.1 N using USP apparatus-II. Furosemide loaded SNEDDS tablets have great prospects for further in vivo studies, and the theoretical model is useful for calculating the adequate amounts of adsorbents required to solidify these systems.


2021 ◽  
Vol 22 (5) ◽  
pp. 2285
Author(s):  
Thu Hang Lai ◽  
Susann Schröder ◽  
Magali Toussaint ◽  
Sladjana Dukić-Stefanović ◽  
Mathias Kranz ◽  
...  

The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.


2021 ◽  
Vol 14 (4) ◽  
pp. 294
Author(s):  
Eric G. Romanowski ◽  
Islam T. M. Hussein ◽  
Steven C. Cardinale ◽  
Michelle M. Butler ◽  
Lucas R. Morin ◽  
...  

Presently, there is no FDA- or EMA-approved antiviral for the treatment of human adenovirus (HAdV) ocular infections. This study determined the antiviral activity of filociclovir (FCV) against ocular HAdV isolates in vitro and in the Ad5/NZW rabbit ocular model. The 50% effective concentrations (EC50) of FCV and cidofovir (CDV) were determined for several ocular HAdV types using standard plaque reduction assays. Rabbits were topically inoculated in both eyes with HAdV5. On day 1, the rabbits were divided into four topical treatment groups: (1) 0.5% FCV 4x/day × 10 d; (2) 0.1% FCV 4x/day × 10 d; (3) 0.5% CDV 2x/day × 7 d; (4) vehicle 4x/day × 10 d. Eyes were cultured for virus on days 0, 1, 3, 4, 5, 7, 9, 11, and 14. The resulting viral eye titers were determined using standard plaque assays. The mean in vitro EC50 for FCV against tested HAdV types ranged from 0.50 to 4.68 µM, whereas those treated with CDV ranged from 0.49 to 30.3 µM. In vivo, compared to vehicle, 0.5% FCV, 0.1% FCV, and 0.5% CDV produced lower eye titers, fewer numbers of positive eye cultures, and shorter durations of eye infection. FCV demonstrated anti-adenovirus activity in vitro and in vivo.


1997 ◽  
Vol 77 (5) ◽  
pp. 2427-2445 ◽  
Author(s):  
Heath S. Lukatch ◽  
M. Bruce Maciver

Lukatch, Heath S. and M. Bruce MacIver. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro. J. Neurophysiol. 77: 2427–2445, 1997. Rat neocortical brain slices generated rhythmic extracellular field [microelectroencephalogram (micro-EEG)] oscillations at theta frequencies (3–12 Hz) when exposed to pharmacological conditions that mimicked endogenous ascending cholinergic and GABAergic inputs. Use of the specific receptor agonist and antagonist carbachol and bicuculline revealed that simultaneous muscarinic receptor activation and γ-aminobutyric acid-A (GABAA)-mediated disinhibition werenecessary to elicit neocortical oscillations. Rhythmic activity was independent of GABAB receptor activation, but required intact glutamatergic transmission, evidenced by blockade or disruption of oscillations by 6-cyano-7-nitroquinoxaline-2,3-dione and (±)-2-amino-5-phosphonovaleric acid, respectively. Multisite mapping studies showed that oscillations were localized to areas 29d and 18b (Oc2MM) and parts of areas 18a and 17. Peak oscillation amplitudes occurred in layer 2/3, and phase reversals were observed in layers 1 and 5. Current source density analysis revealed large-amplitude current sinks and sources in layers 2/3 and 5, respectively. An initial shift in peak inward current density from layer 1 to layer 2/3 indicated that two processes underlie an initial depolarization followed by oscillatory activity. Laminar transections localized oscillation-generating circuitry to superficial cortical layers and sharp-spike-generating circuitry to deep cortical layers. Whole cell recordings identified three distinct cell types based on response properties during rhythmic micro-EEG activity: oscillation-on (theta-on) and -off (theta-off) neurons, and transiently depolarizing glial cells. Theta-on neurons displayed membrane potential oscillations that increased in amplitude with hyperpolarization (from −30 to −90 mV). This, taken together with a glutamate antagonist-induced depression of rhythmic micro-EEG activity, indicated that cholinergically driven neocortical oscillations require excitatory synaptic transmission. We conclude that under the appropriate pharmacological conditions, neocortical brain slices were capable of producing localized theta frequency oscillations. Experiments examining oscillation physiology, pharmacology, and topography demonstrated that neocortical brain slice oscillations share many similarities with the in vivo and in vitro theta EEG activity recorded in other brain regions.


2015 ◽  
Vol 309 (4) ◽  
pp. E370-E379 ◽  
Author(s):  
Keeley L. Rose ◽  
Andrew J. Watson ◽  
Thomas A. Drysdale ◽  
Gediminas Cepinskas ◽  
Melissa Chan ◽  
...  

A common complication of type 1 diabetes mellitus is diabetic ketoacidosis (DKA), a state of severe insulin deficiency. A potentially harmful consequence of DKA therapy in children is cerebral edema (DKA-CE); however, the mechanisms of therapy-induced DKA-CE are unknown. Our aims were to identify the DKA treatment factors and membrane mechanisms that might contribute specifically to brain cell swelling. To this end, DKA was induced in juvenile mice with the administration of the pancreatic toxins streptozocin and alloxan. Brain slices were prepared and exposed to DKA-like conditions in vitro. Cell volume changes were imaged in response to simulated DKA therapy. Our experiments showed that cell swelling was elicited with isolated DKA treatment components, including alkalinization, insulin/alkalinization, and rapid reductions in osmolality. Methyl-isobutyl-amiloride, a nonselective inhibitor of sodium-hydrogen exchangers (NHEs), reduced cell swelling in brain slices elicited with simulated DKA therapy (in vitro) and decreased brain water content in juvenile DKA mice administered insulin and rehydration therapy (in vivo). Specific pharmacological inhibition of the NHE1 isoform with cariporide also inhibited cell swelling, but only in the presence of the anion transport (AT) inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid. DKA did not alter brain NHE1 isoform expression, suggesting that the cell swelling attributed to the NHE1 was activity dependent. In conclusion, our data raise the possibility that brain cell swelling can be elicited by DKA treatment factors and that it is mediated by NHEs and/or coactivation of NHE1 and AT.


2013 ◽  
Vol 110 (5) ◽  
pp. 1227-1245 ◽  
Author(s):  
Arij Daou ◽  
Matthew T. Ross ◽  
Frank Johnson ◽  
Richard L. Hyson ◽  
Richard Bertram

The nucleus HVC (proper name) within the avian analog of mammal premotor cortex produces stereotyped instructions through the motor pathway leading to precise, learned vocalization by songbirds. Electrophysiological characterization of component HVC neurons is an important requirement in building a model to understand HVC function. The HVC contains three neural populations: neurons that project to the RA (robust nucleus of arcopallium), neurons that project to Area X (of the avian basal ganglia), and interneurons. These three populations are interconnected with specific patterns of excitatory and inhibitory connectivity, and they fire with characteristic patterns both in vivo and in vitro. We performed whole cell current-clamp recordings on HVC neurons within brain slices to examine their intrinsic firing properties and determine which ionic currents are responsible for their characteristic firing patterns. We also developed conductance-based models for the different neurons and calibrated the models using data from our brain slice work. These models were then used to generate predictions about the makeup of the ionic currents that are responsible for the different responses to stimuli. These predictions were then tested and verified in the slice using pharmacological manipulations. The model and the slice work highlight roles of a hyperpolarization-activated inward current ( Ih), a low-threshold T-type Ca2+ current ( ICa-T), an A-type K+ current ( IA), a Ca2+-activated K+ current ( ISK), and a Na+-dependent K+ current ( IKNa) in driving the characteristic neural patterns observed in the three HVC neuronal populations. The result is an improved characterization of the HVC neurons responsible for song production in the songbird.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi222-vi222
Author(s):  
Breanna Mann ◽  
Noah Bell ◽  
Denise Dunn ◽  
Scott Floyd ◽  
Shawn Hingtgen ◽  
...  

Abstract Brain cancers remain one of the greatest medical challenges. The lack of experimentally tractable models that recapitulate brain structure/function represents a major impediment. Platforms that enable functional testing in high-fidelity models are urgently needed to accelerate the identification and translation of therapies to improve outcomes for patients suffering from brain cancer. In vitro assays are often too simple and artificial while in vivo studies can be time-intensive and complicated. Our live, organotypic brain slice platform can be used to seed and grow brain cancer cell lines, allowing us to bridge the existing gap in models. These tumors can rapidly establish within the brain slice microenvironment, and morphologic features of the tumor can be seen within a short period of time. The growth, migration, and treatment dynamics of tumors seen on the slices recapitulate what is observed in vivo yet is missed by in vitro models. Additionally, the brain slice platform allows for the dual seeding of different cell lines to simulate characteristics of heterogeneous tumors. Furthermore, live brain slices with embedded tumor can be generated from tumor-bearing mice. This method allows us to quantify tumor burden more effectively and allows for treatment and retreatment of the slices to understand treatment response and resistance that may occur in vivo. This brain slice platform lays the groundwork for a new clinically relevant preclinical model which provides physiologically relevant answers in a short amount of time leading to an acceleration of therapeutic translation.


2021 ◽  
Vol 95 ◽  
Author(s):  
C.I. Cortés-Martínez ◽  
A.I. Rodríguez-Hernández ◽  
M.R. López-Cuellar ◽  
N. Chavarría-Hernández

Abstract The use of native entomopathogenic nematodes as biocontrol agents is a strategy to decrease the environmental impact of insecticides and achieve sustainable agriculture crops. In this study, the effect of the surface culture of Steinernema sp. JAP1 over two solid media at 23–27°C on infective juvenile (IJ) production and pathogenicity against Galleria mellonella larvae were investigated. First, the bacterial lawn on the surface of the media with egg yolk (P2) or chicken liver (Cl) were incubated in darkness at 30°C for 48 and 72 h, and 100 surface-sterilized IJs were added. Four harvests were conducted within the next 35 days and the mean accumulated production was superior on Cl (210 × 103 IJs) than on P2 (135 × 103 IJs), but the productivity decreased up to 10% when the incubation time of the bacterial lawn was of 72 h. The mean pathogenicity of in vitro- and in vivo-produced IJs were of 47–64% and 31%, respectively. It is worth noting that none of the two solid media had a statistically significant difference in IJ pathogenicity. Considering that the maximum multiplication factor of IJs on solid media was 2108 and that the pathogenicity against G. mellonella was outstanding, Steinernema sp. has a good potential for in vitro mass production.


Sign in / Sign up

Export Citation Format

Share Document