scholarly journals Voluntary physical activity prevents stress-induced behavioral depression and anti-KLH antibody suppression

2001 ◽  
Vol 281 (2) ◽  
pp. R484-R489 ◽  
Author(s):  
Albert Moraska ◽  
Monika Fleshner

The current study addressed whether physical activity can buffer stress-induced “behavioral depression” and immunosuppression. Adult, male Sprague-Dawley rats were housed with either a mobile (physically active) or immobile (sedentary) running wheel and exposed to either stress (inescapable tail shock) or no stress (home cage control). Voluntary wheel running began 4 wk before stressor exposure. Immediately before stress, all rats were administered an intraperitoneal injection of keyhole limpet hemocyanin (KLH; 200 μg), and anti-KLH Ig was measured weekly for 4 wk using ELISA. Prior physical activity reduced the stress-induced behavioral depression and prevented the stress-induced suppression of anti-KLH IgM and IgG2a antibodies. Anti-KLH IgG1 was stress insensitive. These data suggest that physical activity can buffer the negative impact of stress on behavior and acquired immune function.

2003 ◽  
Vol 94 (2) ◽  
pp. 660-667 ◽  
Author(s):  
Gwendolyn F. Elphick ◽  
Benjamin N. Greenwood ◽  
Jay Campisi ◽  
Monika Fleshner

Moderate, habitual physical activity improves health, possibly because of beneficial changes in immune function. For example, physical activity can increase natural killer cell cytotoxicity, T cell proliferation, and macrophage function but has minimal impact on antigen-driven B-2-mediated immunoglobulin (Ig) responses. The following studies tested whether physical activity selectively impacts nonantigen-driven B-1-natural IgM (nIgM) but not antigen-driven B-2 Ig. Adult male, pathogen-free Sprague-Dawley rats in a barrier facility voluntarily ran in wheels from 7 to 56 days or were housed in an enriched environment for 56 days. Rats received either no antigen or keyhole limpet hemocyanin (KLH) to assess the B-2 response. Blood samples assessed serum nIgM, total IgG, total serum protein, anti-KLH IgM, and anti-KLH IgG. Physically active rats had higher serum nIgM after 7 days of running, and nIgM remained elevated over 56 days of running. In contrast, free-wheel running produced no changes in total IgG, total serum protein, anti-KLH IgM, and anti-KLH IgG. Environmental enrichment did not alter immune measures from controls. These results suggest that B-1, not B-2, cell responses are selectively impacted by physical activity. Because nIgM is important in multiple aspects of the immune response, an elevation in this innate humoral component could contribute to improved immunity in physically active organisms.


2009 ◽  
Vol 87 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Nicola Hopwood ◽  
Tlangelani Maswanganyi ◽  
Lois M. Harden

Although it has been established that some acute phase responses present differently depending on whether a virus or bacteria activates the innate immune system, it has not yet been established whether fever and sickness behaviors, such as anorexia and lethargy, present differently. We therefore investigated the effects of administering lipopolysaccharide (LPS) and polyinosinic : polycytidylic acid (poly I:C) on body temperature, food intake, body mass, and activity (cage activity and wheel running). Male Sprague–Dawley rats were randomly assigned to receive an intraperitoneal injection of one of LPS (75 µg/kg or 250 µg/kg), poly I:C (3000 µg/kg or 4000 µg/kg), or saline. Administration of LPS or poly I:C induced fever, anorexia, and lethargy. Although voluntary wheel running and cage activity were both significantly reduced after administration of LPS or poly I:C, they were not affected equally. Indeed voluntary wheel running was decreased on average by approximately 30% more than cage activity regardless of the dose or type of mimetic administered. Our results indicate that poly I:C is less effective at inducing anorexia, lethargy, and fever in rats than is LPS, and that avoidance of exercise in animals and humans during infection is likely to be a more prominent feature of illness than is avoidance of routine daily activity.


2021 ◽  
Vol 19 (1) ◽  
pp. 21-28
Author(s):  
P. Tayfur ◽  
K. Gökçe Tezel ◽  
Ö. Barutçu ◽  
S. Yılmaz ◽  
E. Ö. Özgür ◽  
...  

A fructose-rich diet has been known to cause metabolic syndrome effects such as body weight gain, increased blood pressure, blood lipids and glucose levels. The role of voluntary physical activity in these alterations is not known clearly. The aim of this study was to investigate the possible improving effects of voluntary physical activity in rats that were feeding with a fructose-rich diet. Spraque-Dawley female rats were separated as control (C;n=7), voluntary physical activity (A;n=7), fructose (F;n=7) and fructose+activity (F+A;n=7) groups. A and FA groups were kept in cages with running wheels during six weeks. F and FA groups were fed with adding 20% fructose in drinking water. Body weight was measured weekly and Lee Index was used to determine obesity. At the end of the feeding period serum glucose, insulin and lipid levels were measured by enzymatic method and blood pressure was determined with the tail-cuff method. Daily voluntary walking distance in F+A and A groups were similar during six weeks. Fructose intake induced to increase systolic blood pressure (p=0.001), diastolic blood pressure (p=0.002), glucose (p=0.041), insulin (p=0.001), cholesterol (p=0.001), triglyceride (p=0.001) and liver weight (p=0.035). The voluntary activity was found effective on the decrease of weight gain (p=0.018) however we did not observe a significant effect on blood pressure (p=0.917) and insulin resistance (p=0.565) following the fructose-rich diet. We conclude that voluntary activity has preventive effect on obesity but may not to be effective on increased blood pressure and insulin resistance in female rats which were feeding fructose-rich diet during six weeks.


2015 ◽  
Vol 150 ◽  
pp. 53-63 ◽  
Author(s):  
Laura Moody ◽  
Joy Liang ◽  
Pique P. Choi ◽  
Timothy H. Moran ◽  
Nu-Chu Liang

2007 ◽  
Vol 32 (4) ◽  
pp. 711-720 ◽  
Author(s):  
Karyn A. Esser ◽  
Wen Su ◽  
Sergey Matveev ◽  
Vicki Wong ◽  
Li Zeng ◽  
...  

Physical activity reduces cardiovascular disease related mortality in diabetic patients. However, it is unknown if the diabetic state reduces voluntary physical activity and, if so, if the voluntary physical activity at the reduced level is sufficient to improve cardiovascular risk factors. To address these two specific questions, we investigated voluntary wheel running performance in an obese and type 2 diabetic mouse model, the db/db mice. In addition, we determined the effects of running on body mass, blood glucose, insulin, plasma free fatty acids, cholesterol, and vascular smooth muscle hyper-contractility. Our results showed that daily running distance, time, and speed were significantly reduced in the db/db mice to about 23%, 32%, and 71%, respectively, of that in non-diabetic control mice. However, this low level of running was sufficient to induce a reduction in the vascular smooth muscle hyper-contractility, cholesterol, and some plasma free fatty acids, as well as to delay the decrease in blood insulin. These changes occurred in the absence of weight loss and a detectable decrease in blood glucose. Thus, the results of this study demonstrated that voluntary wheel running activity was dramatically reduced in db/db mice. However, the low levels of running were beneficial, in the absence of effects on obesity or blood glucose, with significant reductions in cardiovascular risk factors and potential delays in β-cell dysfunction.


2009 ◽  
Vol 297 (1) ◽  
pp. R176-R184 ◽  
Author(s):  
J. A. Teske ◽  
C. M. Kotz

Caloric restriction (CR) and metabolic glucoprivation affect spontaneous physical activity (SPA), but it's unknown whether these treatments similarly affect SPA in selectively bred obesity-prone (OP) and -resistant (OR) rats. OR rats have greater basal SPA and are more responsive to treatments that modulate SPA, such as orexin A administration. We hypothesized that OR rats would be more sensitive to other treatments modulating SPA. To test this, continuous 24-h SPA was measured before and during acute (24 h) and chronic (8 wk) CR in OR, OP, and Sprague-Dawley rats. Pharmacological glucoprivation was produced by injection of 2-deoxyglucose (2-DG), and SPA was measured 5 h postinjection. Acute CR increased SPA in all groups; however, the effect was dependent on the index of SPA and time interval during the 24-h time period. In contrast to OR rats, chronic CR increased distance traveled, ambulatory episodes, and time spent in ambulation and stereotypy during the time interval preceding anticipation of food in OP and Sprague-Dawley rats. Although the effects of 2-DG treatment on SPA were minimal, OR rats had significantly greater SPA than OP and Sprague-Dawley rats independent of treatment. That chronic CR failed to result in significant changes in SPA in OR rats suggests that these rats may be especially unresponsive to treatments modulating feeding. This insensitivity coupled with elevated basal SPA levels may in part mediate phenotypic traits of lean rats.


Author(s):  
Hesham Shamshoum ◽  
Greg Lawrence McKie ◽  
Kyle D. Medak ◽  
Kristin E. Ashworth ◽  
Bruce E. Kemp ◽  
...  

Olanzapine (OLZ) is used in the treatment of schizophrenia and a growing number of "off‐label" conditions. While effective in reducing psychoses, OLZ causes rapid impairments in glucose and lipid homeostasis. The purpose of this study was to investigate if voluntary physical activity via wheel running (VWR) would protect against the acute metabolic side effects of OLZ. Male C57BL/6J mice remained sedentary or were provided with running wheels overnight, prior to treatment with OLZ either at the beginning of the light cycle, or 7 or 24 hours following the cessation of VWR. Prior VWR protected against OLZ-induced hyperglycemia immediately and 7 hours following a bout of overnight wheel running. Protection against, hyperglycemia immediately following VWR was associated with increased insulin tolerance and an attenuated OLZ-induced increase in the serum glucagon:insulin ratio. The protective effect of VWR against OLZ-induced increases in hyperglycemia and glucagon:insulin ratio were maintained in high fat fed, and AMPK b1 deficient mice, models which display a potentiated OLZ-induced increase in blood glucose. Repeated OLZ treatment did not impair VWR performance and protection against the acute effects of OLZ on blood glucose was present after 1 week of daily OLZ treatment in mice given access to running wheels. In contrast to the effects on glucose metabolism, VWR, for the most part, did not impact OLZ induced perturbations in lipolysis, liver triglyceride accumulation or whole-body substrate oxidation. Collectively our findings demonstrate the efficacy of voluntary physical activity as an approach to protect against OLZ-induced impairments in glucose metabolism.


2015 ◽  
Vol 118 (11) ◽  
pp. 1331-1343 ◽  
Author(s):  
Jacqueline L. Beaudry ◽  
Emily C. Dunford ◽  
Erwan Leclair ◽  
Erin R. Mandel ◽  
Ashley J. Peckett ◽  
...  

Diabetes is rapidly induced in young male Sprague-Dawley rats following treatment with exogenous corticosterone (CORT) and a high-fat diet (HFD). Regular exercise alleviates insulin insensitivity and improves pancreatic β-cell function in insulin-resistant/diabetic rodents, but its effect in an animal model of elevated glucocorticoids is unknown. We examined the effect of voluntary exercise (EX) on diabetes development in CORT-HFD-treated male Sprague-Dawley rats (∼6 wk old). Animals were acclimatized to running wheels for 2 wk, then given a HFD, either wax (placebo) or CORT pellets, and split into 4 groups: placebo-sedentary (SED) or -EX and CORT-SED or -EX. After 2 wk of running combined with treatment, CORT-EX animals had reduced visceral adiposity, and increased skeletal muscle type IIb/x fiber area, oxidative capacity, capillary-to-fiber ratio and insulin sensitivity compared with CORT-SED animals (all P < 0.05). Although CORT-EX animals still had fasting hyperglycemia, these values were significantly improved compared with CORT-SED animals (14.3 ± 1.6 vs. 18.8 ± 0.9 mM). In addition, acute in vivo insulin response to an oral glucose challenge was enhanced ∼2-fold in CORT-EX vs. CORT-SED ( P < 0.05) which was further demonstrated ex vivo in isolated islets. We conclude that voluntary wheel running in rats improves, but does not fully normalize, the metabolic profile and skeletal muscle composition of animals administered CORT and HFD.


2006 ◽  
Vol 291 (4) ◽  
pp. R889-R899 ◽  
Author(s):  
J. A. Teske ◽  
A. S. Levine ◽  
M. Kuskowski ◽  
J. A. Levine ◽  
C. M. Kotz

Selectively-bred obesity-resistant [diet resistant (DR)] rats weigh less than obesity-prone [diet-induced obese (DIO)] rats, despite comparable daily caloric intake, suggesting phenotypic energy expenditure differences. Human data suggest that obesity is maintained by reduced ambulatory or spontaneous physical activity (SPA). The neuropeptide orexin A robustly stimulates SPA. We hypothesized that DR rats have greater: 1) basal SPA, 2) orexin A-induced SPA, and 3) preproorexin, orexin 1 and 2 receptor (OX1R and OX2R) mRNA, compared with DIO rats. A group of age-matched out-bred Sprague-Dawley rats were used as additional controls for the behavioral studies. DIO, DR, and Sprague-Dawley rats with dorsal-rostral lateral hypothalamic (rLHa) cannulas were injected with orexin A (0, 31.25, 62.5, 125, 250, and 500 pmol/0.5 μl). SPA and food intake were measured for 2 h after injection. Preproorexin, OX1R and OX2R mRNA in the rLHa, and whole hypothalamus were measured by real-time RT-PCR. Orexin A significantly stimulated feeding in all rats. Orexin A-induced SPA was significantly greater in DR and Sprague-Dawley rats than in DIO rats. Two-mo-old DR rats had significantly greater rLHa OX1R and OX2R mRNA than DIO rats but comparable preproorexin levels. Eight-mo-old DR rats had elevated OX1R and OX2R mRNA compared with DIO rats, although this increase was significant for OX2R only at this age. Thus DR rats show elevated basal and orexin A-induced SPA associated with increased OX1R and OX2R gene expression, suggesting that differences in orexin A signaling through OX1R and OX2R may mediate DIO and DR phenotypes.


Sign in / Sign up

Export Citation Format

Share Document