scholarly journals Voluntary wheel running is effective on suppressing of obesity but not on blood pressure and insulin resistance in female rats fed with high fructose diet

2021 ◽  
Vol 19 (1) ◽  
pp. 21-28
Author(s):  
P. Tayfur ◽  
K. Gökçe Tezel ◽  
Ö. Barutçu ◽  
S. Yılmaz ◽  
E. Ö. Özgür ◽  
...  

A fructose-rich diet has been known to cause metabolic syndrome effects such as body weight gain, increased blood pressure, blood lipids and glucose levels. The role of voluntary physical activity in these alterations is not known clearly. The aim of this study was to investigate the possible improving effects of voluntary physical activity in rats that were feeding with a fructose-rich diet. Spraque-Dawley female rats were separated as control (C;n=7), voluntary physical activity (A;n=7), fructose (F;n=7) and fructose+activity (F+A;n=7) groups. A and FA groups were kept in cages with running wheels during six weeks. F and FA groups were fed with adding 20% fructose in drinking water. Body weight was measured weekly and Lee Index was used to determine obesity. At the end of the feeding period serum glucose, insulin and lipid levels were measured by enzymatic method and blood pressure was determined with the tail-cuff method. Daily voluntary walking distance in F+A and A groups were similar during six weeks. Fructose intake induced to increase systolic blood pressure (p=0.001), diastolic blood pressure (p=0.002), glucose (p=0.041), insulin (p=0.001), cholesterol (p=0.001), triglyceride (p=0.001) and liver weight (p=0.035). The voluntary activity was found effective on the decrease of weight gain (p=0.018) however we did not observe a significant effect on blood pressure (p=0.917) and insulin resistance (p=0.565) following the fructose-rich diet. We conclude that voluntary activity has preventive effect on obesity but may not to be effective on increased blood pressure and insulin resistance in female rats which were feeding fructose-rich diet during six weeks.

2014 ◽  
Vol 306 (8) ◽  
pp. R596-R606 ◽  
Author(s):  
Jacqueline M. Crissey ◽  
Nathan T. Jenkins ◽  
Kasey A. Lansford ◽  
Pamela K. Thorne ◽  
David S. Bayless ◽  
...  

Adipose tissue (AT)-derived cytokines are proposed to contribute to obesity-associated vascular insulin resistance. We tested the hypothesis that voluntary physical activity and diet restriction-induced maintenance of body weight would both result in decreased AT inflammation and concomitant improvements in insulin-stimulated vascular relaxation in the hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF) rat. Rats (aged 12 wk) were randomly assigned to sedentary (SED; n = 10), wheel running (WR; n = 10), or diet restriction (DR; n = 10; fed 70% of SED) for 8 wk. WR and DR rats exhibited markedly lower adiposity (7.1 ± 0.4 and 15.7 ± 1.1% body fat, respectively) relative to SED (27 ± 1.2% body fat), as well as improved blood lipid profiles and systemic markers of insulin resistance. Reduced adiposity in both WR and DR was associated with decreased AT mRNA expression of inflammatory genes (e.g., MCP-1, TNF-α, and IL-6) and markers of immune cell infiltration (e.g., CD8, CD11c, and F4/80). The extent of these effects were most pronounced in visceral AT compared with subcutaneous and periaortic AT. Markers of inflammation in brown AT were upregulated with WR but not DR. In periaortic AT, WR- and DR-induced reductions in expression and secretion of cytokines were accompanied with a more atheroprotective gene expression profile in the adjacent aortic wall. WR, but not DR, resulted in greater insulin-stimulated relaxation in the aorta; an effect that was, in part, mediated by a decrease in insulin-induced endothelin-1 activation in WR aorta. Collectively, we show in OLETF rats that lower adiposity leads to less AT and aortic inflammation, as well as an exercise-specific improvement in insulin-stimulated vasorelaxation.


2015 ◽  
Author(s):  
◽  
Young-Min Park

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Ovariectomized (OVX) rodents are used as a model of human menopause as frequently both experience weight gain, decreased insulin sensitivity and decreased physical activity, which may manifest into metabolic syndrome. Intrinsic aerobic capacity may influence OVX-induced metabolic dysfunction. Female rats selectively bred for high (HCR) and low (LCR) aerobic capacity were used to elucidate the underlying mechanisms by which intrinsic aerobic fitness impacts OVX-associated metabolic dysfunction. We demonstrated that HCR were not fully protected against an OVX-induced decline in insulin sensitivity partially due to a [about]30% attenuation of insulin-stimulated skeletal muscle glucose uptake. HCROVX were protective against HFD-associated insulin resistance through a unique mechanism of behavioral change (i.e. compensatory increase in spontaneous physical activity), while LCROVX exacerbated insulin resistance following HFD. HCR were not protected from OVX-induced reduction in voluntary wheel running; yet HCRhad greater DA activation, compared to LCR, which was associated with their enhanced running distance. Collectively, these data suggest that high aerobic fitness may play a critical role in attenuating metabolic dysfunction associated with OVX and external stress due to their intrinsically enhanced insulin sensitivity. However, high aerobic fitness is not fully protective to OVX-induced impairments in metabolic function and physical activity levels, indicative of a strong physiological effect of ovarian hormone loss.


2021 ◽  
Vol 4 (1) ◽  
pp. 99-114
Author(s):  
Janaína B Garcia ◽  
Fernanda G Do Amaral ◽  
Daniela C Buonfiglio ◽  
Rafaela FA Vendrame ◽  
Patrícia L Alves ◽  
...  

The pineal gland synthesizes melatonin exclusively at night, which gives melatonin the characteristic of a temporal synchronizer of the physiological systems. Melatonin is a regulator of insulin activities centrally and also peripherally and its synthesis is reduced in diabetes.  Since monosodium glutamate (MSG) is often used to induce the type 2 diabetic and metabolic syndrome in animal models, the purpose of this work is to evaluate the potential effects of MSG given to neonates on the pineal melatonin synthesis in different aged male and female rats. Wistar rats were subcutaneously injected with MSG (4mg/g/day) or saline solution (0.9%) from the second to eighth post-natal day. The circadian profiles both melatonin levels and AANAT activity were monitored at different ages. Body weight, naso-anal length, adipose tissues weight, GTT, ITT and serum insulin levels were also evaluated. Typical obesity with the neonatal MSG treatment was observed, indicated by a great increase in adipose depots without a concurrent increase in body weight. MSG treatment did not cause hyperglycemia or glucose intolerance, but induced insulin resistance. An increase of melatonin synthesis at ZT 15 with phase advance was observed in in some animals. The AANAT activity was positively parallel to the melatonin circadian profile. It seems that MSG causes hypothalamic obesity which may increase AANAT activity and melatonin production in pineal gland. These effects were not temporally correlated with insulin resistance and hyperinsulinemia indicating the hypothalamic lesions, particularly in arcuate nucleus induced by MSG in early age, as the principal cause of the increase in melatonin production.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rachel G. Curtis ◽  
Timothy Olds ◽  
François Fraysse ◽  
Dorothea Dumuid ◽  
Gilly A. Hendrie ◽  
...  

Abstract Background Almost one in three Australian adults are now obese, and the rate continues to rise. The causes of obesity are multifaceted and include environmental, cultural and lifestyle factors. Emerging evidence suggests there may be temporal patterns in weight gain related, for example, to season and major festivals such as Christmas, potentially due to changes in diet, daily activity patterns or both. The aim of this study is to track the annual rhythm in body weight, 24 h activity patterns, dietary patterns, and wellbeing in a cohort of Australian adults. In addition, through data linkage with a concurrent children’s cohort study, we aim to examine whether changes in children’s body mass index, activity and diet are related to those of their parents. Methods A community-based sample of 375 parents aged 18 to 65 years old, residing in or near Adelaide, Australia, and who have access to a Bluetooth-enabled mobile device or a computer and home internet, will be recruited. Across a full year, daily activities (minutes of moderate to vigorous physical activity, light physical activity, sedentary behaviour and sleep) will be measured using wrist-worn accelerometry (Fitbit Charge 3). Body weight will be measured daily using Fitbit wifi scales. Self-reported dietary intake (Dietary Questionnaire for Epidemiological Studies V3.2), and psychological wellbeing (WHOQOL-BREF and DASS-21) will be assessed eight times throughout the 12-month period. Annual patterns in weight will be examined using Lowess curves. Associations between changes in weight and changes in activity and diet compositions will be examined using repeated measures multi-level models. The associations between parent’s and children’s weight, activity and diet will be investigated using multi-level models. Discussion Temporal factors, such as day type (weekday or weekend day), cultural celebrations and season, may play a key role in weight gain. The aim is to identify critical opportunities for intervention to assist the prevention of weight gain. Family-based interventions may be an important intervention strategy. Trial registration Australia New Zealand Clinical Trials Registry, identifier ACTRN12619001430123. Prospectively registered on 16 October 2019.


Author(s):  
Jonatan Fridolfsson ◽  
Christoph Buck ◽  
Monica Hunsberger ◽  
Joanna Baran ◽  
Fabio Lauria ◽  
...  

Abstract Background Physical activity (PA) during childhood is important for preventing future metabolic syndrome (MetS). To examine the relationship between PA and MetS in more detail, accurate measures of PA are needed. Previous studies have only utilized a small part of the information available from accelerometer measured PA. This study investigated the association between measured PA and MetS in children with a new method for data processing and analyses that enable more detailed interpretation of PA intensity level. Methods The association between PA pattern and risk factors related to MetS was investigated in a cross- sectional sample of children (n = 2592, mean age 10.9 years, 49.4% male) participating in the European multicenter I. Family study. The risk factors examined include body mass index, blood pressure, high-density lipoprotein cholesterol, insulin resistance and a combined risk factor score (MetS score). PA was measured by triaxial accelerometers and raw data was processed using the 10 Hz frequency extended method (FEM). The PA output was divided into an intensity spectrum and the association with MetS risk factors was analyzed by partial least squares regression. Results PA patterns differed between the European countries investigated, with Swedish children being most active and Italian children least active. Moderate intensity physical activity was associated with lower insulin resistance (R2 = 2.8%), while vigorous intensity physical activity was associated with lower body mass index (R2 = 3.6%), MetS score (R2 = 3.1%) and higher high-density lipoprotein cholesterol (R2 = 2.3%). PA of all intensities was associated with lower systolic- and diastolic blood pressure, although the associations were weaker than for the other risk factors (R2 = 1.5% and R2 = 1.4%). However, the multivariate analysis implies that the entire PA pattern must be considered. The main difference in PA was observed between normal weight and overweight children. Conclusions The present study suggests a greater importance of more PA corresponding to an intensity of at least brisk walking with inclusion of high-intense exercise, rather than a limited time spent sedentary, in the association to metabolic health in children. The methods of data processing and statistical analysis enabled accurate analysis and interpretation of the health benefits of high intensity PA that have not been shown previously.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 66 ◽  
Author(s):  
Teja Klancic ◽  
Isabelle Laforest-Lapointe ◽  
Jolene Wong ◽  
Ashley Choo ◽  
Jodi E. Nettleton ◽  
...  

Pulsed antibiotic treatment (PAT) early in life increases risk of obesity. Prebiotics can reduce fat mass and improve metabolic health. We examined if co-administering prebiotic with PAT reduces obesity risk in rat pups weaned onto a high fat/sucrose diet. Pups were randomized to (1) control [CTR], (2) antibiotic [ABT] (azithromycin), (3) prebiotic [PRE] (10% oligofructose (OFS)), (4) antibiotic + prebiotic [ABT + PRE]. Pulses of antibiotics/prebiotics were administered at d19–21, d28–30 and d37–39. Male and female rats given antibiotics (ABT) had higher body weight than all other groups at 10 wk of age. The PAT phenotype was stronger in ABT males than females, where increased fat mass, hyperinsulinemia and insulin resistance were present and all reversible with prebiotics. Reduced hypothalamic and hepatic expression of insulin receptor substrates and ileal tight junction proteins was seen in males only, explaining their greater insulin resistance. In females, insulin resistance was improved with prebiotics and normalized to lean control. ABT reduced Lactobacillaceae and increased Bacteroidaceae in both sexes. Using a therapeutic dose of an antibiotic commonly used for acute infection in children, PAT increased body weight and impaired insulin production and insulin sensitivity. The effects were reversed with prebiotic co-administration in a sex-specific manner.


Author(s):  
Rubina Mulchandani ◽  
Ambalam M. Chandrasekaran ◽  
Roopa Shivashankar ◽  
Dimple Kondal ◽  
Anurag Agrawal ◽  
...  

Abstract Background Adults in urban areas spend almost 77% of their waking time being inactive at workplaces, which leaves little time for physical activity. The aim of this systematic review and meta-analysis was to synthesize evidence for the effect of workplace physical activity interventions on the cardio-metabolic health markers (body weight, waist circumference, body mass index (BMI), blood pressure, lipids and blood glucose) among working adults. Methods All experimental studies up to March 2018, reporting cardio-metabolic worksite intervention outcomes among adult employees were identified from PUBMED, EMBASE, COCHRANE CENTRAL, CINAHL and PsycINFO. The Cochrane Risk of Bias tool was used to assess bias in studies. All studies were assessed qualitatively and meta-analysis was done where possible. Forest plots were generated for pooled estimates of each study outcome. Results A total of 33 studies met the eligibility criteria and 24 were included in the meta-analysis. Multi-component workplace interventions significantly reduced body weight (16 studies; mean diff: − 2.61 kg, 95% CI: − 3.89 to − 1.33) BMI (19 studies, mean diff: − 0.42 kg/m2, 95% CI: − 0.69 to − 0.15) and waist circumference (13 studies; mean diff: − 1.92 cm, 95% CI: − 3.25 to − 0.60). Reduction in blood pressure, lipids and blood glucose was not statistically significant. Conclusions Workplace interventions significantly reduced body weight, BMI and waist circumference. Non-significant results for biochemical markers could be due to them being secondary outcomes in most studies. Intervention acceptability and adherence, follow-up duration and exploring non-RCT designs are factors that need attention in future research. Prospero registration number: CRD42018094436.


1986 ◽  
Vol 25 (6) ◽  
pp. 1131-1136 ◽  
Author(s):  
Deborah J. Bowen ◽  
Sharon E. Eury ◽  
Neil E. Grunberg

2003 ◽  
Vol 285 (2) ◽  
pp. H499-H506 ◽  
Author(s):  
Stéphanie Héon ◽  
Martin Bernier ◽  
Nicolas Servant ◽  
Stevan Dostanic ◽  
Chunlei Wang ◽  
...  

Doxorubicin (DOX), an anticancer drug, causes a dose-dependent cardiotoxicity. Some evidence suggests that female children have an increased risk for DOX-mediated cardiac damage. To determine whether the iron chelator dexrazoxane (DXR) could reduce DOX-induced cardiotoxicity in the young, we injected day 10 neonate female and male rat pups with a single dose of saline or DOX, DXR, or DXR + DOX (20:1). We followed body weight gain with growth, measured cardiac hypertrophy after a 2-wk swim exercise program, markers of apoptosis (Bcl-2, BAX, BNIP1, caspase 3 activation), oxidative stress (heme oxygenase 1, protein carbonyl levels), the chaperone protein clusterin, and the transcriptional activator early growth response gene-1 (Egr-1) in hearts of nonexercised and exercised rats on neonate day 38. All DOX-alone and DXR + DOX-treated rats showed decreased weight gain, with female rats affected earlier than male rats. DXR-alone, DOX-alone, and DXR + DOX-treated rats had an increased heart weight-to-body weight (heart wt/body wt) ratio after the exercise program with female rats showing the largest increase in heart wt/body wt. Drug-treated females also showed increased cardiac apoptosis, as measured by the increased expression of the proapoptotic proteins BAX and BNIP1 and the appearance of caspase 3 activation products, and oxidative stress, as measured by increased heme oxygenase 1 expression, and reduced Egr-1 and clusterin expression when compared with the similarly treated male rats. We conclude that DXR preinjection did not reduce DOX-induced noncardiac and cardiac damage and that young female rats were more susceptible to DXR and DOX toxicities than age-matched male rats.


2021 ◽  
pp. 097275312110057
Author(s):  
Archana Gaur ◽  
G.K. Pal ◽  
Pravati Pal

Background: Obesity is because of excessive fat accumulation that affects health adversely in the form of various diseases such as diabetes, hypertension, cardiovascular diseases, and many other disorders. Our Indian diet is rich in carbohydrates, and hence the sucrose-induced obesity is an apt model to mimic this. Ventromedial hypothalamus (VMH) is linked to the regulation of food intake in animals as well as humans. Purpose: To understand the role of VMHin sucrose-induced obesity on metabolic parameters. Methods: A total of 24 adult rats were made obese by feeding them on a 32% sucrose solution for 10 weeks. The VMH nucleus was ablated in the experimental group and sham lesions were made in the control group. Food intake, body weight, and biochemical parameters were compared before and after the lesion. Results: Male rats had a significant weight gain along with hyperphagia, whereas female rats did not have a significant weight gain inspite of hyperphagia. Insulin resistance and dyslipidemia were seen in both the experimental and control groups. Conclusion: A sucrose diet produces obesity which is similar to the metabolic syndrome with insulin resistance and dyslipidemia, and a VMH lesion further exaggerates it. Males are more prone to this exaggeration.


Sign in / Sign up

Export Citation Format

Share Document