CNS sympathetic outflow neurons to white fat that express MEL receptors may mediate seasonal adiposity

2001 ◽  
Vol 281 (2) ◽  
pp. R666-R672 ◽  
Author(s):  
C. Kay Song ◽  
Timothy J. Bartness

Many animals show seasonal changes in adiposity that are triggered by changes in the photoperiod. For example, in short “winterlike” days, the nocturnal duration of pineal melatonin (MEL) secretion increases ultimately resulting in body fat decreases by Siberian hamsters. These decreases in body fat are mediated through increases in the sympathetic drive on white adipose tissue (WAT). The central nervous system (CNS) origins of the sympathetic outflow from brain to WAT include the suprachiasmatic nucleus (SCN), an area necessary for the reception of season-encoded MEL signals in Siberian hamsters. Therefore, we tested whether SCN neurons that are part of the sympathetic outflow to WAT also express MEL receptors (MEL1a). This was accomplished by labeling the sympathetic outflow from brain to WAT using a transsynaptic retrograde tract tracer, the pseudorabies virus (PRV), injected into inguinal WAT combined with labeling of brain MEL1areceptors using in situ hybridization. We found PRV-labeled neurons that also expressed MEL1a-receptor mRNA in several brain regions including the SCN. Thus the increased duration of MEL secretion in short days may increase MEL1a-receptor stimulation that, in turn, increases the sympathetic drive on WAT, thereby increasing lipolysis and decreasing adiposity.

2001 ◽  
Vol 281 (5) ◽  
pp. R1499-R1505 ◽  
Author(s):  
Gregory E. Demas ◽  
Timothy J. Bartness

Seasonal adjustments in Siberian hamster adiposity are triggered by day length changes [i.e., short “winter-like” days (SDs) elicit body fat decreases vs. long “summer-like” days (LDs)]. These and other white adipose tissue (WAT) mass decreases traditionally have been ascribed to lipolysis triggered by sympathetically mediated, adrenal medullary released epinephrine; however, recent evidence suggests that direct sympathetic innervation of WAT also is important. Therefore, the contributions of WAT sympathetic innervation and adrenal medullary catecholamines to SD-induced decreases in adiposity were tested. Siberian hamsters were surgically bilaterally adrenal demedullated (ADMEDx) or sham ADMEDx, and all had one inguinal WAT (IWAT) pad sympathectomized via locally injected guanethidine, with the contralateral pad serving as a within-animal innervated control. One-half of the hamsters remained in LDs; the remainder was transferred to SDs. Guanethidine and ADMEDx abolished IWAT norepinephrine and adrenal epinephrine contents, respectively. Although sympathetic denervation or ADMEDx alone did not block SD-induced decreases in IWAT mass, their combination did. These results suggest that both adrenal catecholamines and the sympathetic innervation of WAT interact to decrease SD-induced decreased adiposity.


1997 ◽  
Vol 273 (6) ◽  
pp. R2032-R2039 ◽  
Author(s):  
Tarja Porkka-Heiskanen ◽  
Naherin Khoshaba ◽  
Kathryn Scarbrough ◽  
Janice H. Urban ◽  
Martha H. Vitaterna ◽  
...  

To determine whether changes in gonadotropin-releasing hormone (GnRH) neurons are early indicators of photostimulation, Siberian hamsters were placed in short days (6:18-h light-dark) at 3 ( experiment 1) or 6 ( experiment 2) wk of age where they were held for 3 ( experiment 1) or 4 ( experiment 2) wk. Hamsters were then moved to long photoperiod (16:8-h light-dark). In experiment 1, brains were collected 1–21 days after transfer from short to long days. In experiment 2, brains were collected only on the second morning of long day exposure. Long and short day controls were included in both experiments. Cells containing GnRH mRNA, as visualized by in situ hybridization, were counted. As expected, there were no differences in the number of detectable GnRH mRNA-containing cells among animals chronically exposed to long or short photoperiods. However, on the second morning after transfer from short to long photoperiod, a positive shift in the distribution of GnRH mRNA-containing cells occurred relative to the respective controls in the two experiments. Increases in follicle-stimulating hormone secretion and gonadal growth occurred days later. In conclusion, a rapid but transient increase in the distribution of detectable GnRH mRNA-containing cells is an early step in the photostimulation of the hypothalamic-pituitary-gonadal axis.


1996 ◽  
Vol 270 (2) ◽  
pp. R383-R392 ◽  
Author(s):  
M. M. Mauer ◽  
T. J. Bartness

Long day (LD)-housed Siberian hamsters show compensatory mass increases in nonexcised white adipose tissue (WAT) after partial lipectomy, whereas hamsters exposed to short days (SDs) for 22 wk do not. The purpose of this experiment was to determine the cellularity changes underlying lipectomy-induced WAT compensation and whether the duration of SD exposure affects this compensation. Male Siberian hamsters were epididymal (E) or inguinal (I) WAT lipectomized (x) or sham-lipectomized (Sham) and either remained in LDs or were transferred to SDs and killed 6 or 12 wk later. In LDs, lipectomized hamsters showed compensatory mass increases in retroperitoneal WAT (RWAT) due to hyperplasia. IWAT mass also was increased by approximately 40% in LD-housed EWATx hamsters because of nonsignificant increases in adipocyte size and number at weeks 6 and 12, respectively. SD-housed hamsters responded to lipectomy by delaying the SD-associated body fat loss so that RWAT mass was reduced only one-third as much in lipectomized as in Sham hamsters, and the IWAT adipocytes of EWATx hamsters were larger than in Sham hamsters at week 6. At week 12, there was little indication of fat pad compensation by SD-housed hamsters. Collectively, the results of the present experiment and our previous study (16) suggest that the inhibitory effect of SDs on fat pad compensation after lipectomy increases with prolonged SD exposure.


2019 ◽  
Author(s):  
Daniel Sobrido-Cameán ◽  
Herve Tostivint ◽  
Sylvie Mazan ◽  
María Celina Rodicio ◽  
Isabel Rodríguez-Moldes ◽  
...  

ABSTRACTFive prosomatostatin genes (PSST1, PSST2, PSST3, PSST5 and PSST6) have been recently identified in elasmobranchs (Tostivint, Gaillard, Mazan, & Pézeron, 2019). In order to gain insight into the contribution of each somatostatin to specific nervous systems circuits and behaviors in this important jawed vertebrate group, we studied the distribution of neurons expressing PSST mRNAs in the catshark Scyliorhinus canicula using in situ hybridization with specific probes for the five PSSTs transcripts. Additionally, we combined in situ hybridization with tyrosine hydroxylase (TH) immunochemistry for better localization of some PSSTs-positive populations. The five PSST genes showed expression in the brain, although with important differences in distribution. PSST1 and PSST6 were widely expressed in different brain regions. Instead, PSST2 and PSST3 were expressed only in the ventral hypothalamus and in some hindbrain lateral reticular neurons, whereas PSST5 was only expressed in the region of the entopeduncular nucleus. PSST1 and PSST6 were expressed by numerous pallial neurons, although in different populations judging from the colocalization of tyrosine hydroxylase (TH) immunoreactivity and PSST6 expression in pallial neurons and the absence of colocalization between TH and PSST1 expression. Differential expression of PSST1 and PSST6 was also observed in the subpallium, hypothalamus, diencephalon, optic tectum, midbrain tegmentum and rhombencephalon. Expression of PSST1 was observed in numerous cerebrospinal fluid-contacting (CSF-c) neurons of the paraventricular organ of the hypothalamus and the central canal of the spinal cord. These wide differences in expression of PSST genes together with the numerous brain nuclei expressing PSSTs, indicate that catshark somatostatinergic neurons are implicated differentially in a number of neural circuits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Oihane Uriarte Huarte ◽  
Dimitrios Kyriakis ◽  
Tony Heurtaux ◽  
Yolanda Pires-Afonso ◽  
Kamil Grzyb ◽  
...  

Microglia are the resident immune effector cells of the central nervous system (CNS) rapidly reacting to various pathological stimuli to maintain CNS homeostasis. However, microglial reactions in the CNS may also worsen neurological disorders. Hence, the phenotypic analysis of microglia in healthy tissue may identify specific poised subsets ultimately supporting or harming the neuronal network. This is all the more important for the understanding of CNS disorders exhibiting regional-specific and cellular pathological hallmarks, such as many neurodegenerative disorders, including Parkinson’s disease (PD). In this context, we aimed to address the heterogeneity of microglial cells in susceptible brain regions for PD, such as the nigrostriatal pathway. Here, we combined single-cell RNA-sequencing with immunofluorescence analyses of the murine nigrostriatal pathway, the most affected brain region in PD. We uncovered a microglia subset, mainly present in the midbrain, displaying an intrinsic transcriptional immune alerted signature sharing features of inflammation-induced microglia. Further, an in situ morphological screening of inferred cellular diversity showed a decreased microglia complexity in the midbrain when compared to striatum. Our study provides a resource for the identification of specific microglia phenotypes within the nigrostriatal pathway, which may be relevant in PD.


Endocrinology ◽  
2011 ◽  
Vol 152 (11) ◽  
pp. 4252-4264 ◽  
Author(s):  
Tomohiro Osugi ◽  
Katsuhisa Uchida ◽  
Masumi Nozaki ◽  
Kazuyoshi Tsutsui

RFamide (RFa) peptides play various important roles in the central nervous system in both invertebrates and vertebrates. However, there is no evidence of the existence of any RFamide peptide in the brain of hagfish, one of the oldest lineages of vertebrates. In this study, we sought to identify novel RFamide peptides from the brains of hagfish (Paramyxine atami). We identified four novel RFamide peptides, which had the C-terminal Pro-Gln-Arg-Phe-NH2 structure. cDNA cloning revealed that the identified RFamide peptides are encoded in two types of cDNA. Molecular phylogenetic analysis of the two precursors indicated that the hagfish RFamide peptides belong to the PQRFamide peptide group that includes mammalian neuropeptide FF and AF. Based on immunohistochemistry and in situ hybridization, hagfish PQRFamide peptide precursor mRNA and its translated peptides were localized in the infundibular nucleus of the hypothalamus. Immunoreactive fibers were terminated on blood vessels in the infundibular nucleus. Dense immunoreactive fibers were also observed in other brain regions. We further showed that one of the hagfish PQRFamide peptides significantly stimulated the expression of gonadotropin-β mRNA in the cultured hagfish pituitary. These results indicate that the control mechanism of gonadotropin expression by a hypothalamic neuropeptide evolved in the agnathan brain. This is the first evidence describing the identification of RFamide peptides in the hagfish brain. This is also the first report showing the regulation of gonadotropin expression by a homolog of neuropeptide FF that belongs to the PQRFamide peptide group in any vertebrate.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 704
Author(s):  
Yingyu Zhou ◽  
Wanyi Qiu ◽  
Yimei Wang ◽  
Rong Wang ◽  
Tomohiro Takano ◽  
...  

As a kind of metabolically triggered inflammation, obesity influences the interplay between the central nervous system and the enteral environment. The present study showed that β-elemene, which is contained in various plant substances, had effects on recovering the changes in metabolites occurring in high-fat diet (HFD)-induced obese C57BL/6 male mice brains, especially in the prefrontal cortex (PFC) and hippocampus (HIP). β-elemene also partially reversed HFD-induced changes in the composition and contents of mouse gut bacteria. Furthermore, we evaluated the interaction between cerebral metabolites and intestinal microbiota via Pearson correlations. The prediction results suggested that Firmicutes were possibly controlled by neuron integrity, cerebral inflammation, and neurotransmitters, and Bacteroidetes in mouse intestines might be related to cerebral aerobic respiration and the glucose cycle. Such results also implied that Actinobacteria probably affected cerebral energy metabolism. These findings suggested that β-elemene has regulatory effects on the imbalanced microbiota-gut-brain axis caused by obesity and, therefore, would contribute to the future study in on the interplay between cerebral metabolites from different brain regions and the intestinal microbiota of mice.


Sign in / Sign up

Export Citation Format

Share Document