Age-dependent alterations in Ca2+ homeostasis: role of TRPV5 and TRPV6

2006 ◽  
Vol 291 (6) ◽  
pp. F1177-F1183 ◽  
Author(s):  
Monique van Abel ◽  
Sylvie Huybers ◽  
Joost G. J. Hoenderop ◽  
Annemiete W. C. M. van der Kemp ◽  
Johannes P. T. M. van Leeuwen ◽  
...  

Aging is associated with alterations in Ca2+ homeostasis, which predisposes elder people to hyperparathyroidism and osteoporosis. Intestinal Ca2+ absorption decreases with aging and, in particular, active transport of Ca2+ by the duodenum. In addition, there are age-related changes in renal Ca2+ handling. To examine age-related changes in expression of the renal and intestinal epithelial Ca2+ channels, control (TRPV5+/+) and TRPV5 knockout (TRPV5−/−) mice aged 10, 30, and 52 wk were studied. Aging of TRPV5+/+ mice resulted in a tendency toward increased renal Ca2+ excretion and significantly decreased intestinal Ca2+ absorption, which was accompanied by reduced expression of TRPV5 and TRPV6, respectively, despite increased serum 1,25(OH)2D3 levels. Similarly, in TRPV5−/− mice the existing renal Ca2+ loss was more pronounced in elder animals, whereas the compensatory intestinal Ca2+ absorption and TRPV6 expression declined with aging. In both mice strains, aging resulted in a resistance to 1,25(OH)2D3 and diminished renal vitamin D receptor mRNA levels, whereas serum Ca2+ levels remained constant. Furthermore, 52-wk-old TRPV5−/− mice showed severe hyperparathyroidism, whereas PTH levels in elder TRPV5+/+ mice remained normal. In 52-wk-old TRPV5−/− mice, serum osteocalcin levels were increased in accordance with the elevated PTH levels, suggesting an increased bone turnover in these mice. In conclusion, downregulation of TRPV5 and TRPV6 is likely involved in the impaired Ca2+ (re)absorption during aging. Moreover, TRPV5−/− mice likely develop age-related hyperparathyroidism and osteoporotic characteristics before TRPV5+/+ mice, demonstrating the importance of the epithelial Ca2+ channels in Ca2+ homeostasis.

2004 ◽  
Vol 355 (1-2) ◽  
pp. 81-84 ◽  
Author(s):  
Akira Terao ◽  
Teresa L. Steininger ◽  
Stephen R. Morairty ◽  
Thomas S. Kilduff

2001 ◽  
Vol 169 (1) ◽  
pp. 145-151 ◽  
Author(s):  
HJ Armbrecht ◽  
MA Boltz ◽  
TL Hodam ◽  
VB Kumar

Non-transformed rat intestinal epithelial cell (IEC) lines were used to study the action of 1,25-dihydroxyvitamin D(3) (1,25(OH)2D) in the intestine. The capacity of 1,25(OH)2D to increase the expression of the cytochrome P450 component of the vitamin D 24-hydroxylase (CYP24) was determined in IEC-6 and IEC-18 cell lines. In IEC-6 cells, which are derived from crypt cells isolated from the whole small intestine, 1,25(OH)2D markedly increased expression of CYP24 protein and mRNA within 12 h. In contrast, in IEC-18 cells, which are derived from crypt cells from the ileum only, 1,25(OH)2D did not increase expression of CYP24 until 24-48 h. The maximal levels of CYP24 mRNA seen in the IEC-18 cells were only 31% of the maximal levels seen in the IEC-6 cells. In the presence of 1,25(OH)2D, phorbol esters rapidly increased CYP24 mRNA levels in IEC-18 cells from almost undetectable to levels seen in IEC-6 cells. Protein kinase inhibitors abolished the stimulation by 1,25(OH)2D and by phorbol esters in both cell lines. Stimulation of mRNA levels by phorbol esters required new protein synthesis but stimulation by 1,25(OH)2D did not. These studies demonstrated that the rapid action of 1,25(OH)2D in IEC-6 cells is related to the activation of protein kinase C, an event which is missing in the IEC-18 cells. This differential response to 1,25(OH)2D probably takes place at a post-receptor site, since the number of vitamin D receptors in each cell line was found to be similar.


2021 ◽  
Vol 8 (1) ◽  
pp. 19-25
Author(s):  
Iwona Kusz vel Sobczuk ◽  
Anna Święch

Aim: The aim of the article was to discuss the role of balanced supplementation in diet of age-related macular degeneration patients. Methods: This review was carried out using comprehensive and systematic literature reports on the role of supplementation of vitamin D, vitamin C, vitamin E, vitamin B6, vitamin B12, zinc, lutein, zeaxanthin, omega-3 acid and folic acid in the prevention of AMD. Results: Vitamins, minerals and carotenoids are essential for the proper retinal function over an inflammation and immune response modulation. Conclusions: Vitamins, minerals and carotenoids discussed in the article have anti-inflammatory and antioxidative properties in the management of AMD progression. Accordingly, it is relevant to assure the appropriate level of these nutrients in a diet of AMD patients.


Cytokine ◽  
2018 ◽  
Vol 111 ◽  
pp. 88-96 ◽  
Author(s):  
Rafaela Pravato Colato ◽  
Vânia Brazão ◽  
Gabriel Tavares do Vale ◽  
Fabricia Helena Santello ◽  
Pedro Alexandre Sampaio ◽  
...  

Endocrinology ◽  
2020 ◽  
Vol 161 (2) ◽  
Author(s):  
Işıl Kasapoğlu ◽  
Emre Seli

Abstract As women delay childbearing because of demographic and socioeconomic trends, reproductive aging and ensuing ovarian dysfunction become increasingly more prevalent causes of infertility. Age-related decline in fertility is characterized by both quantitative and qualitative deterioration of the ovarian reserve. Importantly, disorders of aging are frequently associated with mitochondrial dysfunction, as are impaired oogenesis and embryogenesis. Ongoing research explores the role of mitochondrial dysfunction in ovarian aging, and potential ways to exploit mitochondrial mechanisms to slow down or reverse age-related changes in female gonads.


2017 ◽  
Vol 152 (5) ◽  
pp. S631
Author(s):  
Dapeng Jin ◽  
Rong Lu ◽  
Yong-Guo Zhang ◽  
Yinglin Xia ◽  
Jun Sun

Sign in / Sign up

Export Citation Format

Share Document