Antagonism of endogenous putative P2Y receptors reduces the growth of MDCK-derived cysts cultured in vitro

2007 ◽  
Vol 292 (1) ◽  
pp. F15-F25 ◽  
Author(s):  
Clare M. Turner ◽  
Brian F. King ◽  
Kaila S. Srai ◽  
Robert J. Unwin

P2Y receptors couple to G proteins and either mobilize intracellular Ca2+ or alter cAMP levels to modulate the activity of Ca2+- and cAMP-sensitive ion channels. We hypothesize that increased ion transport into the lumen of MDCK cysts can osmotically drive fluid movement and increase cyst size. Furthermore, activation of the adenylate cyclase/cAMP pathway may trigger cell proliferation via an extracellular signal-related kinase cascade. To test this hypothesis, several P2Y receptor inhibitors were used on the MDCK in vitro model of renal cyst formation. The nonspecific P2 receptor inhibitors reactive blue 2 and suramin reduced cyst growth significantly, as did PPADS and, to a lesser extent, the P2Y1-specific antagonist MRS2179. Cyst growth was reduced by ∼50% when ATP was removed from the culture medium with apyrase, although stable analogs of ATP failed to increase cyst size. The nonselective P2X receptor inhibitor Coomassie brilliant blue G was ineffective at reducing cyst growth, suggesting no involvement of P2X receptors. Finally, the presence of selective inhibitors of ERK activation (either PD98059 or U0126) greatly reduced cyst growth, whereas in untreated cysts ERK activity was observed to increase with time. We conclude that stimulation of endogenous P2Y receptors by extracellular ATP increases growth of MDCK cysts via cAMP-dependent activation of the ERK pathway. P2Y receptor antagonists may have therapeutic potential in reducing cyst size and slowing disease progression; although further studies in vitro and in vivo are needed to investigate the specificity and role of these P2Y receptors in renal cystic diseases.

2020 ◽  
Author(s):  
Shirin V. Sundar ◽  
Xia Zhou ◽  
Brenda S. Magenheimer ◽  
Gail A. Reif ◽  
Darren P. Wallace ◽  
...  

ABSTRACTAutosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl− secretion. We have examined the effectiveness of the indazole carboxylic acid, H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes and cyst formation using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl−-mediated short-circuit currents in human ADPKD cells at 1 μM and it significantly inhibited both cAMP- and EGF-induced proliferation of ADPKD cells with an IC50 of 5-10 μM. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and hyperphosphorylated Rb levels. H2-GMZ treatment also decreased ErbB2, Akt, and Cdk4, consistent with inhibition of the chaperone Hsp90, and reduced the levels of the CFTR Cl− channel. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Studies using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ (20mg/kg) was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox:Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl− secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.


2014 ◽  
Vol 95 (1) ◽  
pp. 86-90
Author(s):  
O S Kalinina ◽  
A U Ziganshin

P2 receptors are detected in different tissues and organs, which makes them a potential target of pharmacological action. A number of studies confirming the maturity of purinergic theory are currently published. Literature review focuses on P2 receptors characteristics, their main current agonists and antagonists, as well as on the possibilities of pharmacological action on these receptors. The most important studies addressing new chemical compounds important for studying P2 receptors and also compounds with potential for medical use are analyzed. Data on current successes of P2 receptors pharmacology and introduction of P2Y receptors antagonists into clinical practice are presented. Over the last decades a certain progress was observed in studying P2 receptors agonists and antagonists. There is a growing interest to pathophysiology and therapeutic potential of purinergic neurotransmission. Nevertheless, there is a need for developing new compounds acting selectively to these receptors both in vivo and in vitro. Despite the large number of P2 receptors agonists and antagonists, most of them have certain drawbacks, including incomplete of non-selective antagonism, or significant effect on ecto-ATPase activity. Thus, studying P2 receptors to find novel compounds acting on these receptors is of significant clinical value. Apparently, this trend of developing novel drugs — P2 receptors agonists and antagonists — is particularly promising.


2019 ◽  
Vol 12 (8) ◽  
pp. 644-653 ◽  
Author(s):  
Tijmen H Booij ◽  
Wouter N Leonhard ◽  
Hester Bange ◽  
Kuan Yan ◽  
Michiel Fokkelman ◽  
...  

Abstract Polycystic kidney disease (PKD) is a prevalent genetic disorder, characterized by the formation of kidney cysts that progressively lead to kidney failure. The currently available drug tolvaptan is not well tolerated by all patients and there remains a strong need for alternative treatments. The signaling rewiring in PKD that drives cyst formation is highly complex and not fully understood. As a consequence, the effects of drugs are sometimes difficult to predict. We previously established a high throughput microscopy phenotypic screening method for quantitative assessment of renal cyst growth. Here, we applied this 3D cyst growth phenotypic assay and screened 2320 small drug-like molecules, including approved drugs. We identified 81 active molecules that inhibit cyst growth. Multi-parametric phenotypic profiling of the effects on 3D cultured cysts discriminated molecules that showed preferred pharmacological effects above genuine toxicological properties. Celastrol, a triterpenoid from Tripterygium Wilfordii, was identified as a potent inhibitor of cyst growth in vitro. In an in vivo iKspCre-Pkd1lox,lox mouse model for PKD, celastrol inhibited the growth of renal cysts and maintained kidney function.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 532
Author(s):  
Jennifer Q. J. Zhang ◽  
Sayanthooran Saravanabavan ◽  
Gopala K. Rangan

The DNA damage response (DDR) pathway is upregulated in autosomal dominant polycystic kidney disease (ADPKD) but its functional role is not known. The ataxia-telangiectasia mutated (ATM) and AT and Rad3-related (ATR) protein kinases are key proximal transducers of the DDR. This study hypothesized that reducing either ATM or ATR attenuates kidney cyst formation and growth in experimental ADPKD. In vitro, pharmacological ATM inhibition by AZD0156 reduced three-dimensional cyst growth in MDCK and human ADPKD cells by up to 4.4- and 4.1-fold, respectively. In contrast, the ATR inhibitor, VE-821, reduced in vitro MDCK cyst growth but caused dysplastic changes. In vivo, treatment with AZD0156 by oral gavage for 10 days reduced renal cell proliferation and increased p53 expression in Pkd1RC/RC mice (a murine genetic ortholog of ADPKD). However, the progression of cystic kidney disease in Pkd1RC/RC mice was not altered by genetic ablation of ATM from birth, in either heterozygous (Pkd1RC/RC/Atm+/−) or homozygous (Pkd1RC/RC/Atm−/−) mutant mice at 3 months. In conclusion, despite short-term effects on reducing renal cell proliferation, chronic progression was not altered by reducing ATM in vivo, suggesting that this DDR kinase is dispensable for kidney cyst formation in ADPKD.


1998 ◽  
Vol 12 (1) ◽  
pp. 82-85 ◽  
Author(s):  
E. De Bri ◽  
W. Lei ◽  
O. Svensson ◽  
M. Chowdhury ◽  
S.A. Moak ◽  
...  

Recently discovered chemically modified tetracyclines have been found to be effective inhibitors of matrix metalloproteinase (MMP)-mediated connective tissue destruction in a variety of pathologic processes, including rheumatoid arthritis and osteoarthritis (OA). Since the histologic techniques used in our laboratory have been validated in Hartley guinea pigs, which have a high incidence of OA-like changes in the proximal tibia, we have used two tetracyclines which have potent inhibitory capacity against variuos MMPs, doxycycline (Dox) and a compound known as chemically modified tetracyclines (CMT-7). These were given by mouth to a group of guinea pigs for 4 to 8 months, and we assessed the effect of the compound on morphologic and biochemical aspects of OA. We found that prophylactic CMT-7 given orally decreases OA changes in the knee joints both in vitro and in vivo in the guinea pig OA model. Cartilage fibrillation and destruction, in addition to subchondral bone sclerosis and cyst formation, were all decreased in the central compartment of the medial condyle, which is most affected by OA compared with controls. Also collagen, hyaluronan and proteoglycancontent in cartilage was higher in the CMT-7 treated group compared with controls. In contrast, OA changes were not decreased in the Dox group. Our results confirm that various tetracyclines have reduced the severity of OA in animal models, indicating the therapeutic potential of this class of compounds in the future.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


Sign in / Sign up

Export Citation Format

Share Document