scholarly journals Perivascular CD73+ cells attenuate inflammation and interstitial fibrosis in the kidney microenvironment

2019 ◽  
Vol 317 (3) ◽  
pp. F658-F669 ◽  
Author(s):  
Heather M. Perry ◽  
Nicole Görldt ◽  
Sun-sang J. Sung ◽  
Liping Huang ◽  
Kinga P. Rudnicka ◽  
...  

Progressive tubulointerstitial fibrosis may occur after acute kidney injury due to persistent inflammation. Purinergic signaling by 5′-ectonucleotidase, CD73, an enzyme that converts AMP to adenosine on the extracellular surface, can suppress inflammation. The role of CD73 in progressive kidney fibrosis has not been elucidated. We evaluated the effect of deletion of CD73 from kidney perivascular cells (including pericytes and/or fibroblasts of the Foxd1+ lineage) on fibrosis. Perivascular cell expression of CD73 was necessary to suppress inflammation and prevent kidney fibrosis in Foxd1CreCD73fl/fl mice evaluated 14 days after unilateral ischemia-reperfusion injury or folic acid treatment (250 mg/kg). Kidneys of Foxd1CreCD73fl/fl mice had greater collagen deposition, expression of proinflammatory markers (including various macrophage markers), and platelet-derived growth factor recepetor-β immunoreactivity than CD73fl/fl mice. Kidney dysfunction and fibrosis were rescued by administration of soluble CD73 or by macrophage deletion. Isolated CD73−/− kidney pericytes displayed an activated phenotype (increased proliferation and α-smooth muscle actin mRNA expression) compared with wild-type controls. In conclusion, CD73 in perivascular cells may act to suppress myofibroblast transformation and influence macrophages to promote a wound healing response. These results suggest that the purinergic signaling pathway in the kidney interstitial microenvironment orchestrates perivascular cells and macrophages to suppress inflammation and prevent progressive fibrosis.

2021 ◽  
pp. 1-15
Author(s):  
Lu Zhou ◽  
Xian Xue ◽  
Qing Hou ◽  
Chunsun Dai

<b><i>Background:</i></b> Ferroptosis, an iron-dependent form of regulated necrosis mediated by lipid peroxidation, predominantly polyunsaturated fatty acids, is involved in postischemic and toxic kidney injury. However, the role and mechanisms for tubular epithelial cell (TEC) ferroptosis in kidney fibrosis remain largely unknown. <b><i>Objectives:</i></b> The aim of the study was to decipher the role and mechanisms for TEC ferroptosis in kidney fibrosis. <b><i>Methods:</i></b> Mouse models with unilateral ureter obstruction (UUO) or ischemia/reperfusion injury (IRI) were generated. <b><i>Results:</i></b> We found that TEC ferroptosis exhibited as reduced glutathione peroxidase 4 (GPX4) expression and increased 4-hydroxynonenal abundance was appeared in kidneys from chronic kidney disease (CKD) patients and mouse models with UUO or IRI. Inhibition of ferroptosis could largely mitigate kidney injury, interstitial fibrosis, and inflammatory cell accumulation in mice after UUO or IRI. Additionally, treatment of TECs with (1S,3R)-RSL-3, an inhibitor of GPX4, could enhance cell ferroptosis and recruit macrophages. Furthermore, inhibiting TEC ferroptosis reduced monocyte chemotactic protein 1 (MCP-1) secretion and macrophage chemotaxis. <b><i>Conclusions:</i></b> This study uncovers that TEC ferroptosis may promote interstitial fibrosis and inflammation, and targeting ferroptosis may shine a light on protecting against kidney fibrosis in patients with CKDs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Jia ◽  
Xin Kang ◽  
Lishan Tan ◽  
Yifei Ren ◽  
Lei Qu ◽  
...  

Acute kidney injury (AKI) is a worldwide health problem currently lacking therapeutics that directly promote renal repair or prevent the occurrence of chronic fibrosis. DNA damage is a feature of many forms of kidney injury, and targeting DNA damage and repair might be effective strategies for kidney protection in AKI. Boosting nicotinamide adenine dinucleotide (NAD+) levels is thought to have beneficial effects on DNA damage repair and fibrosis in other organs. However, no kidney-related studies of such effects have been performed to date. Here, we have shown that NMN (an NAD+ precursor) administration could significantly reduce tubular cell DNA damage and subsequent cellular senescence induced by hydrogen peroxide and hypoxia in human proximal tubular cells (HK-2 cells). The DNA damage inhibition, antiaging and anti-inflammatory effects of NMN were further confirmed in a unilateral ischemia-reperfusion injury (uIRI) mouse model. Most importantly, the antifibrosis activity of NMN was also shown in ischemic AKI mouse models, regardless of whether NMN was administered in advance or during the recovery phase. Collectively, these results suggest that NMN could significantly inhibit tubular cell DNA damage, senescence and inflammation. NMN administration might be an effective strategy for preventing or treating kidney fibrosis after AKI.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Lejla Medzikovic ◽  
Laila Aryan ◽  
Gregoire Ruffenach ◽  
Mansoureh Eghbali

Cardiac fibrosis critically contributes to heart failure progression. Depending on the pathological insult, cardiac fibrosis either replaces necrotic cardiomyocytes or is reactive to cardiac fibroblast (CF) activation. The extracellular matrix (ECM) consists of various proteins and the role of fibrillar collagen has been well studied. However, the role of non-fibrillar ECM proteins in cardiac fibrosis is less clear. To explore the role of ECM in reactive cardiac fibrosis, we performed bioinformatic analysis on online available microarray GEO datasets from hearts of human hypertrophic cardiomyopathy patients and two mouse models of transverse aortic constriction and Angiotensin II (AngII) infusion. We found that 27 differentially expressed genes were common between the three datasets. Among these genes was the small leucine-rich proteoglycan Asporin (ASPN). ASPN was previously shown to be upregulated in the ECM of replacement fibrosis in porcine ischemia/reperfusion injury. However, not much is known about the role of ASPN in reactive interstitial fibrosis. We show that cardiac ASPN expression is enhanced in mice after short- and long-term AngII infusion compared to saline infusion. In resident CF isolated from adult mice, ASPN expression is upregulated by both AngII and TGF-β stimulation. Here, ASPN expression correlates with a gene signature of activated CFs including periostin ( postn ), α-smooth muscle actin ( acta2 ) and collagens I and III ( col1a1, col3a1 ), and with functional characteristics of activated CFs including proliferation, migration and collagen production. Modulating ASPN via siRNA in mouse resident CFs inhibits postn, acta2, col1a1 and col3a1 expression and total collagen production, indicating repressed CF activation upon ASPN knockdown. Taken together, ASPN may be an attractive novel target against reactive interstitial fibrosis.


2017 ◽  
Vol 43 (5) ◽  
pp. 1841-1854 ◽  
Author(s):  
Jun Zhou ◽  
Jiying  Zhong ◽  
Sen  Lin ◽  
Zhenxing Huang ◽  
Hongtao Chen ◽  
...  

Background: Renal fibrosis is a common pathophysiological feature of chronic kidney disease. Acute kidney injury (AKI) is defined as an independent causal factor of chronic kidney disease, with a pathological representation of post renal fibrosis. However, the etiopathogenesis underlying post renal fibrosis induced by AKI is not completely understood. Methods: BALB/c mice were treated with bpv or vehicle controls and were, respectively, the ischemia reperfusion (IR) model group and control group. All of the animals had blood taken from the orbital venous plexus at 24 hours after IR. Six mice in each group were randomly chosen and euthanized 7 days after IR treatment, and the remaining six mice in each group were euthanized 14 days after IR treatment. We examined the effect on post kidney fibrosis of inhibiting PTEN activity in mice in an IR induced AKI experimental model. Results: Compared with vehicle mice, bpv-(PTEN specific inhibitor) treated mice accumulated more bone marrow-derived fibroblasts and myofibroblasts in the kidneys. Inhibition of PTEN activity increased the expression of α-smooth muscle actin and extracellular matrix proteins and post kidney fibrosis. Furthermore, inhibition of PTEN activity resulted in more inflammatory cytokines in the kidneys of mice subjected to IR-induced renal fibrosis. Moreover, inhibition of PTEN activity up-regulated PI3K protein expression and Akt phosphorylation. Conclusions: Our study demonstrated that PTEN played an important role in post renal fibrosis in mice with ischemia reperfusion-induced AKI. These results indicated that the PTEN/PI3K/Akt signaling pathway may serve as a novel therapeutic target for AKI-induced chronic kidney disease.


Nephron ◽  
2021 ◽  
pp. 1-11
Author(s):  
Xiangnan Dong ◽  
Rui Cao ◽  
Qiang Li ◽  
Lianghong Yin

<b><i>Introduction:</i></b> Long noncoding RNAs (lncRNAs) have been reported to be involved in the occurrence and development of various diseases. This study was to investigate the role of lncRNA-H19 in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) and its underlying mechanism. <b><i>Methods:</i></b> Bilateral renal pedicle ischemia-reperfusion injury (IRI) was used to establish the IRI-AKI model in C57BL/6 mice. The expression levels of lncRNA-H19, miR-196a-5p, α-SMA, collagen I, Wnt1, and β-catenin in mouse kidney tissues and fibroblasts were determined by quantitative real-time PCR and Western blotting. The degree of renal fibrosis was evaluated by hematoxylin and eosin staining. The interaction between lncRNA-H19 and miR-196a-5p was verified by bioinformatics analysis and luciferase reporter assay. Immunohistochemistry and immunofluorescence were used to evaluate the expression of α-SMA and collagen I in kidney tissues and fibroblasts of mice. <b><i>Results:</i></b> lncRNA-H19 is upregulated, and miR-196a-5p is downregulated in kidney tissues of IRI mice. Moreover, miR-196a-5p is a direct target of lncRNA-H19. lncRNA-H19 overexpression promotes kidney fibrosis and activates fibroblasts during AKI-CKD development, while miR-196a-5p overexpression reversed these effects in vitro. Furthermore, lncRNA-H19 overexpression significantly upregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice, while miR-196a-5p overexpression downregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice. <b><i>Conclusion:</i></b> lncRNA-H19 induces kidney fibrosis during AKI-CKD by regulating the miR-196a-5p/Wnt/β-catenin signaling pathway.


2014 ◽  
Vol 307 (5) ◽  
pp. F581-F592 ◽  
Author(s):  
Chun-Fu Lai ◽  
Shuei-Liong Lin ◽  
Wen-Chih Chiang ◽  
Yung-Ming Chen ◽  
Vin-Cent Wu ◽  
...  

Emerging data have suggested that acute kidney injury (AKI) is often incompletely repaired and can lead to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. However, the underlying mechanisms linking AKI to CKD remain obscure. The present study aimed to investigate the role of cysteine-rich protein 61 (Cyr61) after unilateral kidney ischemia-reperfusion injury (IRI) in mice. After IRI, increased expression of Cyr61 was detected, predominately in the proximal tubular epithelium. This was confirmed by in vitro experiments, which showed that hypoxia stimulated Cyr61 expression in cultured proximal tubular epithelial cells. The proinflammatory property of Cyr61 was indicated by its ability to upregulate monocyte chemoattractant protein-1 and IL-6. Additionally, we found elevated urinary Cyr61 excretion in patients with AKI. Notably, treatment of mice with an anti-Cyr61 antibody attenuated the upregulation of kidney monocyte chemoattractant protein-1, IL-6, IL-1β, and macrophage inflammatory protein-2 and reduced the infiltration of F4/80-positive macrophages on days 7 and 14 after IRI. In addition, blockade of Cyr61 reduced the mRNA expression of collagen, transforming growth factor-β, and plasminogen activator inhibitor-I as well as the degree of collagen fibril accumulation, as evaluated by picrosirius red staining, and levels of α-smooth muscle actin proteins by day 14. Concurrently, in the treated group, peritubular microvascular density was more preserved on day 14. We conclude that Cyr61 blockade inhibits the triad of inflammation, interstitial fibrosis, and capillary rarefaction after severe ischemic AKI. The results of this study expand the knowledge of the mechanisms underlying the AKI-to-CKD transition and suggest that Cyr61 is a potential therapeutic target.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 306
Author(s):  
Maxime Rossi ◽  
Kéziah Korpak ◽  
Arnaud Doerfler ◽  
Karim Zouaoui Boudjeltia

Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). Renal IRI combines major events, including a strong inflammatory immune response leading to extensive cell injuries, necrosis and late interstitial fibrosis. Macrophages act as key players in IRI-induced AKI by polarizing into proinflammatory M1 and anti-inflammatory M2 phenotypes. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1), mediates protection against renal IRI and modulates macrophage polarization by enhancing a M2 subset. Hereafter, we review the dual effect of macrophages in the pathogenesis of IRI-induced AKI and discuss the critical role of HO-1 expressing macrophages.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Jonatan Barrera-Chimal ◽  
Alan Le Mercier ◽  
Soumaya El-Moghrabi ◽  
Peter Kolkhof ◽  
Frederic Jaisser

Introduction: One of the most common causes of acute kidney injury (AKI) is renal ischemia/reperfusion (IR). Mineralocorticoid receptor (MR) antagonism has shown beneficial effects against renal IR consequences. The potential benefit of novel non-steroidal MR antagonists such as finerenone has not been explored. Objective: Evaluate the efficacy of finerenone to prevent the acute and chronic consequences of ischemic AKI. Methods: For the acute study (24 hours), 18 rats were divided in: sham, rats subjected to bilateral renal ischemia of 25 min and rats that received three doses of finerenone at -48 h, -24 h and -1 h before the ischemia. For the chronic study (4 months), 21 rats were divided in: sham, rats with 45 min of bilateral ischemia and rats treated with Finerenone at day -2, -1 and 1h before IR. The left kidney was used for histology and the right kidney for molecular analysis. Results: After 24 h of reperfusion, the untreated IR rats presented a 3-fold increase in plasma creatinine, accompanied by 40% of tubules presenting cell detachment and casts. Kim-1 and NGAL mRNA levels were induced by 30-fold. In contrast, the rats that received finerenone presented normal creatinine and significantly fewer injured tubules (11%) and a less pronounced induction of kim-1 and NGAL (8-fold). After 4 months, the untreated IR rats developed chronic kidney disease (CKD), evidenced by kidney dysfunction, increased proteinuria (121.6 vs. 14.3 mg/24h in sham) and renal vascular resistance (16.8 vs. 11.4 mmHg/mL in sham). Tubular dilation, extensive tubule-interstitial fibrosis and an increase in kidney TGF-β and Collagen-I mRNA levels also characterized CKD. The transition from AKI to CKD was fully prevented by finerenone administration at the time of IR. Conclusion: Altogether, our data shows that finerenone is able to prevent AKI induced by IR as well as the chronic and progressive deterioration of kidney function and structure.


2020 ◽  
Vol 319 (2) ◽  
pp. F304-F311
Author(s):  
Jie Zhang ◽  
Ximing Wang ◽  
Jin Wei ◽  
Lei Wang ◽  
Shan Jiang ◽  
...  

Acute kidney injury (AKI) significantly increases the risk of development of chronic kidney disease (CKD). Recently, our laboratory generated a mouse model with the typical phenotypes of AKI to CKD transition in the unilateral kidney. However, AKI, CKD, and even the transition from AKI to CKD usually occur bilaterally rather than unilaterally in patients. Therefore, in the present study, we further modified the strategy and developed a new model of CKD transitioned from bilateral ischemia-reperfusion injury (IRI) in C57BL/6 mice. In this new model, unilateral severe IRI was performed in one kidney while the contralateral kidney was kept intact to maintain animal survival; then, following 14 days of recovery, when the renal function of the injured kidney restored above the survival threshold, the contralateral intact kidney was subjected to a similar IRI. Animals of these two-stage bilateral IRI models with pedicle clamping of 21 and 24 min at a body temperature of 37°C exhibited incomplete recovery from AKI and subsequent development of CKD with characteristics of progressive decline in glomerular filtration rate, increases in plasma creatinine, worsening of proteinuria, and deleterious histopathological changes, including interstitial fibrosis and glomerulosclerosis, in both kidneys. In conclusion, a new bilateral AKI to CKD transition animal model with a typical phenotype of CKD was generated in C57BL/6 mice.


2020 ◽  
Vol 22 (1) ◽  
pp. 271
Author(s):  
Khai Gene Leong ◽  
Elyce Ozols ◽  
John Kanellis ◽  
Shawn S. Badal ◽  
John T. Liles ◽  
...  

Cyclophilins have important homeostatic roles, but following tissue injury, cyclophilin A (CypA) can promote leukocyte recruitment and inflammation, while CypD can facilitate mitochondrial-dependent cell death. This study investigated the therapeutic potential of a selective cyclophilin inhibitor (GS-642362), which does not block calcineurin function, in mouse models of tubular cell necrosis and renal fibrosis. Mice underwent bilateral renal ischemia/reperfusion injury (IRI) and were killed 24 h later: treatment with 10 or 30 mg/kg/BID GS-642362 (or vehicle) began 1 h before surgery. In the second model, mice underwent unilateral ureteric obstruction (UUO) surgery and were killed 7 days later; treatment with 10 or 30 mg/kg/BID GS-642362 (or vehicle) began 1 h before surgery. GS-642362 treatment gave a profound and dose-dependent protection from acute renal failure in the IRI model. This protection was associated with reduced tubular cell death, including a dramatic reduction in neutrophil infiltration. In the UUO model, GS-642362 treatment significantly reduced tubular cell death, macrophage infiltration, and renal fibrosis. This protective effect was independent of the upregulation of IL-2 and activation of the stress-activated protein kinases (p38 and JNK). In conclusion, GS-642362 was effective in suppressing both acute kidney injury and renal fibrosis. These findings support further investigation of cyclophilin blockade in other types of acute and chronic kidney disease.


Sign in / Sign up

Export Citation Format

Share Document