scholarly journals Characterization of renal NaCl and oxalate transport in Slc26a6−/− mice

2019 ◽  
Vol 316 (1) ◽  
pp. F128-F133 ◽  
Author(s):  
Felix Knauf ◽  
Heino Velazquez ◽  
Victoria Pfann ◽  
Zhirong Jiang ◽  
Peter S. Aronson

The apical membrane Cl−/oxalate exchanger SLC26A6 has been demonstrated to play a role in proximal tubule NaCl transport based on studies in microperfused tubules. The present study is directed at characterizing the role of SLC26A6 in NaCl homeostasis in vivo under physiological conditions. Free-flow micropuncture studies revealed that volume and Cl− absorption were similar in surface proximal tubules of wild-type and Slc26a6−/− mice. Moreover, the increments in urine flow rate and sodium excretion following thiazide and furosemide infusion were identical in wild-type and Slc26a6−/− mice, indicating no difference in NaCl delivery out of the proximal tubule. The absence of an effect of deletion of SLC26A6 on NaCl homeostasis was further supported by the absence of lower blood pressure in Slc26a6−/− compared with wild-type mice on normal or low-salt diets. Moreover, raising plasma and urine oxalate by feeding mice a diet enriched in soluble oxalate did not affect mean blood pressure. In contrast to the lack of effect of SLC26A6 deletion on NaCl homeostasis, fractional excretion of oxalate was reduced from 1.6 in wild-type mice to 0.7 in Slc26a6−/− mice. We conclude that, although SLC26A6 is dispensable for renal NaCl homeostasis, it is required for net renal secretion of oxalate.

2015 ◽  
Vol 59 (8) ◽  
pp. 4669-4679 ◽  
Author(s):  
Nilmar Silvio Moretti ◽  
Leonardo da Silva Augusto ◽  
Tatiana Mordente Clemente ◽  
Raysa Paes Pinto Antunes ◽  
Nobuko Yoshida ◽  
...  

ABSTRACTAcetylation of lysine is a major posttranslational modification of proteins and is catalyzed by lysine acetyltransferases, while lysine deacetylases remove acetyl groups. Among the deacetylases, the sirtuins are NAD+-dependent enzymes, which modulate gene silencing, DNA damage repair, and several metabolic processes. As sirtuin-specific inhibitors have been proposed as drugs for inhibiting the proliferation of tumor cells, in this study, we investigated the role of these inhibitors in the growth and differentiation ofTrypanosoma cruzi, the agent of Chagas disease. We found that the use of salermide during parasite infection prevented growth and initial multiplication after mammalian cell invasion byT. cruziat concentrations that did not affect host cell viability. In addition,in vivoinfection was partially controlled upon administration of salermide. There are two sirtuins inT. cruzi, TcSir2rp1 and TcSir2rp3. By using specific antibodies and cell lines overexpressing the tagged versions of these enzymes, we found that TcSir2rp1 is localized in the cytosol and TcSir2rp3 in the mitochondrion. TcSir2rp1 overexpression acts to impair parasite growth and differentiation, whereas the wild-type version of TcSir2rp3 and not an enzyme mutated in the active site improves both. The effects observed with TcSir2rp3 were fully reverted by adding salermide, which inhibited TcSir2rp3 expressed inEscherichia coliwith a 50% inhibitory concentration (IC50) ± standard error of 1 ± 0.5 μM. We concluded that sirtuin inhibitors targeting TcSir2rp3 could be used in Chagas disease chemotherapy.


1995 ◽  
Vol 108 (5) ◽  
pp. 2065-2076 ◽  
Author(s):  
V. Doring ◽  
F. Veretout ◽  
R. Albrecht ◽  
B. Muhlbauer ◽  
C. Schlatterer ◽  
...  

Dictyostelium discoideum cells harbor two annexin VII isoforms of 47 and 51 kDa which are present throughout development. In immunofluorescence and cell fractionation studies annexin VII was found in the cytoplasm and on the plasma membrane. In gene disruption mutants lacking both annexin VII isoforms growth, pinocytosis, phagocytosis, chemotaxis and motility were not significantly impaired under routine laboratory conditions, and the cells were able to complete the developmental cycle on bacterial plates. On non-nutrient agar plates development was delayed by three to four hours and a significant number of aggregates was no longer able to form fruiting bodies. Exocytosis as determined by measuring extracellular cAMP phosphodiesterase, alpha-fucosidase and alpha-mannosidase activity was unaltered, the total amounts of these enzymes were however lower in the mutant than in the wild type. The mutant cells were markedly impaired when they were exposed to low Ca2+ concentrations by adding EGTA to the nutrient medium. Under these conditions growth, motility and chemotaxis were severely affected. The Ca2+ concentrations were similar in mutant and wild-type cells both under normal and Ca2+ limiting conditions; however, the distribution was altered under low Ca2+ conditions in SYN-cells. The data suggest that annexin VII is not required for membrane fusion events but rather contributes to proper Ca2+ homeostasis in the cell.


2001 ◽  
Vol 281 (2) ◽  
pp. F288-F292 ◽  
Author(s):  
Tong Wang ◽  
Chao-Ling Yang ◽  
Thecla Abbiati ◽  
Gary E. Shull ◽  
Gerhard Giebisch ◽  
...  

The absorption of NaCl in the proximal tubule is markedly stimulated by formate. This stimulation of NaCl transport is consistent with a cell model involving Cl−-formate exchange in parallel with pH-coupled formate recycling due to nonionic diffusion of formic acid or H+-formate cotransport. The formate recycling process requires H+ secretion. Although Na+-H+ exchanger isoform NHE3 accounts for the largest component of H+ secretion in the proximal tubule, 40–50% of the rates of HCO[Formula: see text] absorption or cellular H+ extrusion persist in NHE3 null mice. The purpose of the present investigation is to use NHE3 null mice to directly test the role of apical membrane NHE3 in mediating NaCl absorption stimulated by formate. We demonstrate that formate stimulates NaCl absorption in the mouse proximal tubule microperfused in vivo, but the component of NaCl absorption stimulated by formate is absent in NHE3 null mice. In contrast, stimulation of NaCl absorption by oxalate is preserved in NHE3 null mice, indicating that oxalate-stimulated NaCl absorption is independent of Na+-H+ exchange. The virtually complete dependence of formate-induced NaCl absorption on NHE3 activity raises the possibility that NHE3 and the formate transporters are functionally coupled in the brush border membrane.


2012 ◽  
Vol 303 (11) ◽  
pp. F1495-F1502 ◽  
Author(s):  
Michel Baum ◽  
Katherine Twombley ◽  
Jyothsna Gattineni ◽  
Catherine Joseph ◽  
Lin Wang ◽  
...  

NHE3 is the predominant Na+/H+ exchanger on the brush-border membrane (BBM) of the proximal tubule in adults. However, NHE3 null mice still have significant renal BBM Na+/H+ activity. NHE8 has been localized to the BBM of proximal tubules and is more highly expressed in neonates than adult animals. The relative role of NHE8 in adult renal H+ transport is unclear. This study examined whether there was compensation by NHE8 in NHE3−/− mice and by NHE3 in NHE8−/− mice. NHE3−/− mice had significant metabolic acidosis, and renal BBM NHE8 protein abundance was greater in NHE3−/− mice than control mice, indicating that there may be compensation by NHE8 in NHE3−/− mice. NHE8−/− mice had serum bicarbonate levels and pH that were not different from controls. NHE3 protein expression on the BBM was greater in NHE8−/− mice than in wild-type mice, indicating that there may be compensation by NHE3 in NHE8−/− mice. Both BBM NHE3 and NHE8 protein abundance increased in response to acidosis. Blood pressure and Na+/H+ exchanger activity were comparable in NHE8−/− mice to that of controls, but both were significantly lower in NHE3−/− mice compared with control mice. Compared with NHE3−/− mice, NHE3−/−/NHE8−/− mice had lower blood pressures. While serum bicarbonate was comparable in NHE3−/− mice and NHE3−/−/NHE8−/− mice, proximal tubule Na+/H+ exchange activity was less in NHE3−/−/NHE8−/− mice compared with NHE3−/− mice. In conclusion, NHE3 is the predominant Na+/H+ exchanger in adult mice. NHE8 may play a compensatory role in renal acidification and blood pressure regulation in NHE3−/− mice.


2003 ◽  
Vol 71 (5) ◽  
pp. 2584-2590 ◽  
Author(s):  
Masaru Ando ◽  
Yukari C. Manabe ◽  
Paul J. Converse ◽  
Eishi Miyazaki ◽  
Robert Harrison ◽  
...  

ABSTRACT DtxR-type metal ion-dependent repressors, present in many bacterial pathogens, may regulate expression of virulence genes such as that encoding diphtheria toxin. SirR, a DtxR homologue initially identified in Staphylococcus epidermidis, governs the expression of the adjacent sitABC operon encoding a putative metal ion ABC transporter system. We identified a sirR homologue, mntR, in Staphylococcus aureus and demonstrated by gel shift assay that the corynebacterial repressor DtxR binds to the S. aureus mntABC operator in the presence of Fe2+ or Mn2+. Since a mutant DtxR, DtxR(E175K), functions as an iron-independent hyperrepressor in certain settings, we constructed a heterodiploid S. aureus strain expressing dtxR(E175K) from the native mntR promoter. Transcription of the S. aureus mntABC operon was repressed in the presence of Fe2+ or Mn2+ in wild-type and heterodiploid S. aureus strains. Under metal ion-limiting conditions, mntABC transcription was reduced but not abolished in S. aureus isolates expressing dtxR(E175K) compared with an isogenic control, suggesting that DtxR(E175K) binds the S. aureus MntR box in vivo. Under all conditions tested, mntABC transcription in the dtxR(E175K)-expressing strain was reduced relative to the isogenic control, indicating that DtxR(E175K) function was constitutively active. In the mouse skin abscess model, dtxR(E175K)-expressing S. aureus recombinants showed significantly reduced CFU levels compared with the isogenic wild-type control. We conclude that the S. aureus MntR box is recognized by corynebacterial DtxR proteins and thus belongs to the DtxR family of metal-dependent operator sites. Moreover, constitutive repression by DtxR(E175K) reduces the virulence of S. aureus in the mouse skin abscess model.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Karen Denzler ◽  
Jessica Moore ◽  
Heather Harrington ◽  
Kira Morrill ◽  
Trung Huynh ◽  
...  

The botanical,Astragalus membranaceus, is a therapeutic in traditional Chinese medicine. Limited literature exists on the overallin vivoeffects ofA. membranaceuson the human body. This study evaluates the physiological responses toA. membranaceusby measuring leukocyte, platelet, and cytokine responses as well as body temperature and blood pressure in healthy individuals after thein vivoadministration ofA. membranaceus. A dose-dependent increase in monocytes, neutrophils, and lymphocytes was measured 8–12 hours after administration and an increase in the number of circulating platelets was seen as early as 4 hours. A dynamic change in the levels of circulating cytokines was observed, especially in interferon-γand tumor necrosis factor-α, IL-13, IL-6, and soluble IL-2R. Subjective symptoms reported by participants were similar to those typically experienced in viral type immune responses and included fatigue, malaise, and headache. Systolic and diastolic blood pressure were reduced within 4 hours after administration, while body temperature mildly increased within 8 hours after administration. In general, all responses returned to baseline values by 24 hours. Collectively, these results support the role ofA. membranaceusin priming for a potential immune response as well as its effect on blood flow and wound healing.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Robin Ray ◽  
Min Zhang ◽  
Alison C Brewer ◽  
Ajay M Shah

NADPH oxidases (Noxs) are major sources of reactive oxygen species (ROS) that are involved in the pathophysiology of several cardiovascular disorders. Of the 5 Nox isoforms identified to date, Nox2 and Nox4 are the main isoforms expressed in the endothelium. Whereas Nox2 has been implicated in the genesis of endothelial dysfunction, the role of Nox4 remains unclear. Interestingly, the activation mechanisms of Nox2 and Nox4 appear to be distinct. To specifically examine the function of endothelial Nox4 in vivo , we generated transgenic mice with endothelial-targeted overexpression of Nox4 using a Tie2 promoter construct. Nox4 transgenic mice (TG) backcrossed onto a C57BL/6J background had increased Nox4 mRNA in endothelial-rich tissues and in isolated coronary microvascular endothelial cells (CMEC) compared to wild-type littermates (WT) (2-fold increase in CMEC; p<0.001). Aortic Nox4 protein levels were 3-fold higher in TG compared to WT. CMEC isolated from TG mice had increased NADPH-dependent superoxide production compared to WT (237.6 ± 2.7 vs. 186.5 ± 7.1 integrated RLU; n = 3, p<0.01) as well as increased H 2 O 2 production (7.60 ± 0.70 vs. 3.22 ± 0.42 μM H 2 O 2 /105 cells; n=3, p<0.01). No changes were detected in mRNA expression of SOD1, SOD2, SOD3, catalase or eNOS in aorta of TG compared to WT mice. Isolated aortic rings from TG mice exhibited enhanced endothelial-dependent vasorelaxation to cumulative addition of acetylcholine compared to WT (−log EC 50 7.76 ± 0.07 vs. 7.20 ± 0.05; n =12, p<0.001), a difference that was abolished by catalase (1500 units/ml). There was no difference in endothelial-independent responses to sodium nitroprusside (−log EC 50 8.57 ± 0.11 vs. 8.54 ± 0.09; n = 12, p = NS). In vivo blood pressure measured both by tail-cuff plethysmography and ambulatory telemetry was significantly lower in TG compared to WT (systolic 117.4 ± 1.9 vs. 125.5 ± 2.1 mmHg and diastolic 90.1 ± 2.0 vs. 98.1 ± 2.1 mmHg by telemetry; n =5, p<0.05). These results indicate that modest endothelium-targeted overexpression of Nox4 in vivo enhances endothelium-dependent relaxation and reduces blood pressure, probably through increased generation of H 2 O 2 . These in vivo effects are quite distinct from those that have been found with Nox2 overexpression.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2008 ◽  
Vol 200 (1) ◽  
pp. 23-33 ◽  
Author(s):  
S Schmidt ◽  
A Hommel ◽  
V Gawlik ◽  
R Augustin ◽  
N Junicke ◽  
...  

Deletion of glucose transporter geneSlc2a3(GLUT3) has previously been reported to result in embryonic lethality. Here, we define the exact time point of growth arrest and subsequent death of the embryo.Slc2a3−/−morulae and blastocysts developed normally, implantedin vivo, and formed egg-cylinder-stage embryos that appeared normal until day 6.0. At day 6.5, apoptosis was detected in the ectodermal cells ofSlc2a3−/−embryos resulting in severe disorganization and growth retardation at day 7.5 and complete loss of embryos at day 12.5. GLUT3 was detected in placental cone, in the visceral ectoderm and in the mesoderm of 7.5-day-old wild-type embryos. Our data indicate that GLUT3 is essential for the development of early post-implanted embryos.


1995 ◽  
Vol 182 (5) ◽  
pp. 1415-1421 ◽  
Author(s):  
T C Wu ◽  
A Y Huang ◽  
E M Jaffee ◽  
H I Levitsky ◽  
D M Pardoll

Introduction of the B7-1 gene into murine tumor cells can result in rejection of the B7-1 transductants and, in some cases, systemic immunity to subsequent challenge with the nontransduced tumor cells. These effects have been largely attributed to the function of B7-1 as a costimulator in directly activating tumor specific, major histocompatibility class I-restricted CD8+ T cells. We examined the role of B7-1 expression in the direct rejection as well as in the induction of systemic immunity to a nonimmunogenic murine tumor. B-16 melanoma cells with high levels of B7-1 expression did not grow in C57BL/6 recipient mice, while wild-type B-16 cells and cells with low B7-1 expression grew progressively within 21 d. In mixing experiments with B7-1hi and wild-type B-16 cells, tumors grew out in vivo even when a minority of cells were B7-1-. Furthermore, the occasional tumors that grew out after injection of 100% B-16 B7-1hi cells showed markedly decreased B7-1 expression. In vivo antibody depletions showed that NK1.1 and CD8+ T cells, but not CD4+ T cells, were essential for the in vivo rejection of tumors. Animals that rejected B-16 B7-1hi tumors did not develop enhanced systemic immunity against challenge with wild-type B-16 cells. These results suggest that a major role of B7-1 expression by tumors is to mediate direct recognition and killing by natural killer cells. With an intrinsically nonimmunogenic tumor, this direct killing does not lead to enhanced systemic immunity.


Sign in / Sign up

Export Citation Format

Share Document