Differentiated human podocytes endogenously express an inhibitory isoform of vascular endothelial growth factor (VEGF165b) mRNA and protein

2004 ◽  
Vol 286 (4) ◽  
pp. F767-F773 ◽  
Author(s):  
Tai-Gen Cui ◽  
Rebecca R. Foster ◽  
Moin Saleem ◽  
Peter W. Mathieson ◽  
David A. Gillatt ◽  
...  

Despite production by podocytes of the proangiogenic molecule vascular endothelial growth factor-A (VEGF), the glomeruli are not sites of angiogenesis. We recently described mRNA expression of an inhibitory splice variant of VEGF (VEGF165b) in normal kidney (Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D, and Harper SJ. Cancer Res 62: 4123–4131, 2002). Available anti-VEGF antibodies do not distinguish stimulatory from inhibitory VEGF families. To assess the production of VEGF165 (stimulatory) and VEGF165b (inhibitory) isoforms by human podocytes, we examined both primary cultured and conditionally immortalized human podocytes using family- and isoform-specific RT-PCR. In addition, VEGF protein production was analyzed in podocytes, using isoform-specific double-strand small-interference RNAs (siRNA). RT-PCR demonstrated the production of VEGF189 mRNA by podocytes of both phenotypes. In contrast, on differentiation there was a splicing change from VEGF165 to VEGF165b mRNA. In addition, VEGF protein in the supernatant of conditionally immortalized, differentiated podocytes was reduced by VEGF165b siRNA to 20 ± 11% of the level of mock-transfected cells ( P < 0.01). No reduction was seen with mismatch siRNA. Moreover, there was no reduction in VEGF protein concentration in the supernatant of primary cultured, dedifferentiated human podocytes (109 ± 8% of mismatch siRNA, P > 0.1). In conclusion, differentiated but not dedifferentiated human podocytes secrete significant amounts of VEGF165b protein. It is possible that this may explain the paradox of high VEGF production in the glomerulus but no angiogenesis. Furthermore, the existence of this splicing switch in relation to podocyte phenotype suggests that alternative splicing of the VEGF pre-RNA is a regulated process that is open to manipulation and therefore could be a target for novel cancer therapies.

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Shotaro Takano ◽  
Kentaro Uchida ◽  
Shintaro Shoji ◽  
Makoto Itakura ◽  
Dai Iwase ◽  
...  

Background. Previous studies suggest the presence of an association of vascular endothelial growth factor (VEGF) with osteoarthritis (OA) severity and pain in patients with knee OA. VEGF expression in human synovial fibroblasts (SFs) is induced by transforming growth factor-beta (TGFβ). However, the signaling pathway governing TGFβ-mediated regulation of VEGF in SFs has not been identified. Methods. OA patients who underwent total knee arthroplasty had their synovial tissue (SYT) extracted and the constituent SFs cultured. The cells were stimulated with culture medium (control), human recombinant TGFβ (hrTGFβ), hrTGFβ + ALK5 inhibitor SB505124, hrTGFβ + transforming growth factor activating kinase 1 (TAK1) inhibitor (5Z)-7-oxozeaenol, or hrTGFβ + p38 inhibitor SB203580 for 6 h. VEGF mRNA expression in SFs was examined using real-time polymerase chain reaction and VEGF protein production in the cell supernatant was examined using enzyme-linked immunosorbent assay. Additionally, phosphorylated levels of SMAD2 and p38 were examined using western blotting. Results. ALK5 (SB505124) and TAK1 (5Z-oxozeaenol) inhibitors completely suppressed TGFβ-induced VEGF mRNA expression and VEGF protein production. Both SB505124 and 5Z-oxozeaenol also suppressed SMAD2 and p38 phosphorylation. The p38 inhibitor (SB203580) partially inhibited TGFβ-mediated VEGF mRNA and VEGF protein production. Conclusion. TGFβ-mediated regulation of VEGF expression and VEGF protein production in the SYT of OA patients occurs through both the canonical and noncanonical pathway.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Taylor Y Lu ◽  
Courtney K Domigan ◽  
Vaspour Antanesian ◽  
Yasuhiro Nakashima ◽  
Atsushi Nakano ◽  
...  

Vascular endothelial growth factor (VEGF) is one of the pivotal proangiogenic growth factors that has long contributed to our knowledge of blood vessel and circulatory maintenance as well as angiogenesis in both pathology and pathophysiology. However, the non-canonical functions of VEGF in cardiac morphogenesis have not been well characterized. Here, we examined how VEGF regulates cardiomyocyte cell fate. Using chimeric embryos harboring both wild type and VEGF-null embryonic stem cells, we observed that derivatives of VEGF null cells were preferentially recruited to the atrium of the heart in comparison to the ventricles. To further provide physiologic context of this finding, we used reporter-LacZ staining and RT-PCR and found that endogenous VEGF was indeed expressed at much lower levels in the atrium but highly expressed in the ventricle early in cardiac morphogenesis. These data lead to our hypothesis that cell-autonomous expression of VEGF is a determinant of atrial vs. ventricular cardiomyocyte cell fate. To test this hypothesis, we used a VEGF knock-in mouse model of Sm22Cre x Rosa 26 VEGF. VEGF overexpression in cardiomyocytes (and smooth muscle) at E8.5 resulted in lethality by P1 and thickened atrial and ventricular walls in mutant embryos as characterized by histology (H&E, IF). We further explored the molecular changes underlying this phenotype via microarray and RT-PCR and find disruptions in molecular markers necessary for wall development, specifically: Notch-1, BMP10, Nrg-1. Taken together, our data indicates that aberrant embryonic VEGF signaling disrupts several critical signaling pathways and that overexpression leads to disruption of cardiomyocyte proliferation and cardiac morphogenesis. These findings add to the foundation of better understanding heart development, laying the groundwork for future therapy of congenital and acquired cardiac disease.


2007 ◽  
Vol 35 (04) ◽  
pp. 713-723 ◽  
Author(s):  
Lei Dang ◽  
J. Paul Seale ◽  
Xianqin Qu

Increased endothelin-1 (ET-1), vascular endothelial growth factor (VEGF) and activation of protein kinase C (PKC) are co-contributors to endothelial hyperpermeability in diabetes. Several lines of evidence have suggested a hypothesis that activation of specific PKC isoforms are the causative factor in ET-1 and VEGF mediated endothelial dysfunction. In the present study, we tested this hypothesis with hypocrellin A, a naturally occurring PKC inhibitor from a Chinese plant. Human umbilical vein endothelial cells (HUVECs) were incubated with 20 mM glucose in both the presence and absence of hypocrellin A, after which, the protein expression and release of VEGF and mRNA expression and release of ET-1 were measured. VEGF and ET-1 were released into the medium and expressions of VEGF protein and ET-1 mRNA were significantly increased in HUVECs incubated with 20 mM glucose. Hypocrellin A (150 nM) significantly decreased VEGF release (117 ± 3 vs. 180 ± 11 pg/mg, p < 0.05) and VEGF protein expression (from 130 ± 14% to 88 ± 18.5%, p < 0.05). ET-1 release was also reduced in hypocrellin A treated HUVECs (63.3 ± 9.9 vs. 75.2 ± 12.6 ng/mg). Hypocrellin A significantly reversed the effect of high glucose on ET-1 mRNA expression ( p < 0.05). The results revealed that PKC activation plays a pivotal role in VEGF and ET-1 mediated endothelial permeability. The naturally occurring compound hypocrellin A may be a potentially novel treatment for endothelial dysfunction in diabetes.


Lung Cancer ◽  
2005 ◽  
Vol 48 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Daniel T. Merrick ◽  
Jerry Haney ◽  
Sheila Petrunich ◽  
Michio Sugita ◽  
York E. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document