scholarly journals Gamble's “economy of water” revisited: studies in urea transporter knockout mice

2006 ◽  
Vol 291 (1) ◽  
pp. F148-F154 ◽  
Author(s):  
Robert A. Fenton ◽  
Chung-Lin Chou ◽  
Holly Sowersby ◽  
Craig P. Smith ◽  
Mark A. Knepper

The Gamble phenomenon (initially described over 70 years ago as “an economy of water in renal function referable to urea”) suggested that urea plays a special role in the urinary concentrating mechanism and that the concentrating mechanism depends in some complex way on an interaction between NaCl and urea. In this study, the role of collecting duct urea transporters in the Gamble phenomenon was investigated in wild-type mice and mice in which the inner medulla collecting duct (IMCD) facilitative urea transporters, UT-A1 and UT-A3, had been deleted ( UT-A1/3−/− mice). The general features of the Gamble phenomenon were confirmed in wild-type mice, namely 1) the water requirement for the excretion of urea is less than for the excretion of an osmotically equivalent amount of NaCl; and 2) when fed various mixtures of urea and salt in the diet, less water is required for the excretion of the two substances together than the amount of water needed for the excretion of the two substances separately. In UT-A1/3−/− mice both of these elements of the phenomenon were absent, indicating that IMCD urea transporters play a central role in the Gamble phenomenon. A titration study in which wild-type mice were given progressively increasing amounts of urea showed that the ability of the kidney to reabsorb urea was saturable, resulting in osmotic diuresis above excretion rates of ∼6,000 μosmol/day. In the same titration experiments, when increasing amounts of NaCl were added to the diet, mice were unable to increase urinary NaCl concentrations to >420 mM, resulting in osmotic diuresis at NaCl excretion rates of ∼3,500 μosmol/day. Thus both urea and NaCl can induce osmotic diuresis when large amounts are given, supporting the conclusion that the decrease in water excretion with mixtures of urea and NaCl added to the diet (compared with pure NaCl or urea) is due to the separate abilities of urea and NaCl to induce osmotic diuresis, rather than to any specific interaction of urea transport and NaCl transport at an epithelial level.

2007 ◽  
Vol 87 (4) ◽  
pp. 1083-1112 ◽  
Author(s):  
Robert A. Fenton ◽  
Mark A. Knepper

Our understanding of urinary concentrating and diluting mechanisms at the end of the 20th century was based largely on data from renal micropuncture studies, isolated perfused tubule studies, tissue analysis studies and anatomical studies, combined with mathematical modeling. Despite extensive data, several key questions remained to be answered. With the advent of the 21st century, a new approach, transgenic and knockout mouse technology, is providing critical new information about urinary concentrating processes. The central goal of this review is to summarize findings in transgenic and knockout mice pertinent to our understanding of the urinary concentrating mechanism, focusing chiefly on mice in which expression of specific renal transporters or receptors has been deleted. These include the major renal water channels (aquaporins), urea transporters, ion transporters and channels (NHE3, NKCC2, NCC, ENaC, ROMK, ClC-K1), G protein-coupled receptors (type 2 vasopressin receptor, prostaglandin receptors, endothelin receptors, angiotensin II receptors), and signaling molecules. These studies shed new light on several key questions concerning the urinary concentrating mechanism including: 1) elucidation of the role of water absorption from the descending limb of Henle in countercurrent multiplication, 2) an evaluation of the feasibility of the passive model of Kokko-Rector and Stephenson, 3) explication of the role of inner medullary collecting duct urea transport in water conservation, 4) an evaluation of the role of tubuloglomerular feedback in maintenance of appropriate distal delivery rates for effective regulation of urinary water excretion, and 5) elucidation of the importance of water reabsorption in the connecting tubule versus the collecting duct for maintenance of water balance.


2002 ◽  
Vol 283 (4) ◽  
pp. F717-F726 ◽  
Author(s):  
Gustavo Frindt ◽  
Tiffany McNair ◽  
Anke Dahlmann ◽  
Emily Jacobs-Palmer ◽  
Lawrence G. Palmer

To test the role of epithelial Na channels in the day-to-day regulation of renal Na excretion, rats were infused via osmotic minipumps with the Na channel blocker amiloride at rates that achieved drug concentrations of 2–5 μM in the lumen of the distal nephron. Daily Na excretion rates were unchanged, although amiloride-treated animals tended to excrete more Na in the afternoon and less in the late evening than controls. When the rats were given a low-Na diet, Na excretion rates were elevated in the amiloride-treated group within 4 h and remained higher than controls for at least 48 h. Adrenalectomized animals responded similarly to the low-Na diet. In contrast, rats infused with polythiazide at rates designed to inhibit NaCl transport in the distal tubule were able to conserve Na as well as did the controls. Injection of aldosterone (2 μg/100 g body wt) decreased Na excretion in control animals after a 1-h delay. This effect was largely abolished in amiloride-treated rats. On the basis of quantitative analysis of the results, we conclude that activation of amiloride-sensitive channels by mineralocorticoids accounts for 50–80% of the immediate natriuretic response of the kidney to a reduction in Na intake. Furthermore, the channels are necessary to achieve minimal rates of Na excretion during more chronic Na deprivation.


1996 ◽  
Vol 315 (3) ◽  
pp. 745-751 ◽  
Author(s):  
Judith M. CANDY ◽  
Jinichiro KOGA ◽  
Peter F. NIXON ◽  
Ronald G. DUGGLEBY

Several enzymes require thiamine diphosphate (ThDP) as an essential cofactor, and we have used one of these, pyruvate decarboxylase (PDC; EC 4.1.1.1) from Zymomonas mobilis, as a model for this group of enzymes. It is well suited for this purpose because of its stability, ease of purification, homotetrameric subunit structure and simple kinetic properties. Crystallographic analyses of three ThDP-dependent enzymes [Müller, Lindqvist, Furey, Schulz, Jordan and Schneider (1993) Structure 1, 95–103] have suggested that an invariant glutamate participates in catalysis. In order to evaluate the role of this residue, identified in PDC from Zymomonas mobilis as Glu-50, it has been altered to glutamine and aspartate by site-directed mutagenesis of the cloned gene. The mutant proteins were expressed in Escherichia coli. Here we demonstrate that substitution with aspartate yields an enzyme with 3% of the activity of the wild-type, but with normal kinetics for pyruvate. Replacement of Glu-50 with glutamine yields an enzyme with only 0.5% of the catalytic activity of the wild-type enzyme. Each of these mutant enzymes has a decreased affinity for both ThDP and Mg2+. It has been reported that the binding of cofactors to apoPDC quenches the intrinsic tryptophan fluorescence [Diefenbach and Duggleby (1991) Biochem. J. 276, 439–445] and we have identified the residue responsible as Trp-487 [Diefenbach, Candy, Mattick and Duggleby (1992) FEBS Lett. 296, 95–98]. Although this residue is some distance from the cofactor binding site, it lies in the dimer interface, and the proposal has been put forward [Dyda, Furey, Swaminathan, Sax, Farrenkopf and Jordan (1993) Biochemistry 32, 6165–6170] that alteration of ring stacking with Phe-496 of the adjacent subunit is the mechanism of fluorescence quenching when cofactors bind. The closely related enzyme indolepyruvate decarboxylase (from Enterobacter cloacae) has a leucine residue at the position corresponding to Phe-496 but shows fluorescence quenching properties that are similar to those of PDC. This suggests that the fluorescence quenching is due to some perturbation of the local environment of Trp-487 rather than to a specific interaction with Phe-496. This latter hypothesis is supported by our data: mutation of this phenylalanine to leucine, isoleucine or histidine in PDC does not eliminate the fluorescence quenching upon addition of cofactors.


2010 ◽  
Vol 299 (3) ◽  
pp. F656-F663 ◽  
Author(s):  
Libor Kopkan ◽  
Arthur Hess ◽  
Zuzana Husková ◽  
Luděk Červenka ◽  
L. Gabriel Navar ◽  
...  

A deficiency in nitric oxide (NO) generation leads to salt-sensitive hypertension, but the role of increased superoxide (O2−) in such salt sensitivity has not been delineated. We examined the hypothesis that an enhancement in O2− activity induced by high-salt (HS) intake under deficient NO production contributes to the development of salt-sensitive hypertension. Endothelial NO synthase knockout (eNOS KO; total n = 64) and wild-type (WT; total n = 58) mice were given diets containing either normal (NS; 0.4%) or high-salt (HS; 4%) for 2 wk. During this period, mice were chronically treated with a O2− scavenger, tempol (400 mg/l), or an inhibitor of NADPH oxidase, apocynin (1 g/l), in drinking water or left untreated ( n = 6–8 per group). Blood pressure was measured by radiotelemetry and 24-h urine samples were collected in metabolic cages. Basal mean arterial pressure (MAP) in eNOS KO was higher (125 ± 4 vs. 106 ± 3 mmHg) compared with WT. Feeding HS diet did not alter MAP in WT but increased it in eNOS KO to 166 ± 9 mmHg. Both tempol and apocynin treatment significantly attenuated the MAP response to HS in eNOS KO (134 ± 3 and 139 ± 4 mmHg, respectively). Basal urinary 8-isoprostane excretion rates (UIsoV), a marker for endogenous O2− activity, were similar (2.8 ± 0.2 and 2.4 ± 0.3 ng/day) in both eNOS KO and WT mice. However, HS increased UIsoV more in eNOS KO than in WT (4.6 ± 0.3 vs. 3.8 ± 0.2 ng/day); these were significantly attenuated by both tempol and apocynin treatment. These data indicate that an enhancement in O2− activity contributes substantially to the development of salt-sensitive hypertension under NO-deficient conditions.


2006 ◽  
Vol 291 (3) ◽  
pp. G414-G423 ◽  
Author(s):  
Torsten Plösch ◽  
Jelske N. van der Veen ◽  
Rick Havinga ◽  
Nicolette C. A. Huijkman ◽  
Vincent W. Bloks ◽  
...  

The ATP-binding cassette (ABC) half-transporters ABCG5 and ABCG8 heterodimerize into a functional complex that mediates the secretion of plant sterols and cholesterol by hepatocytes into bile and their apical efflux from enterocytes. We addressed the putative rate-controlling role of Abcg5/Abcg8 in hepatobiliary cholesterol excretion in mice during (maximal) stimulation of this process. Despite similar bile salt (BS) excretion rates, basal total sterol and phospholipid (PL) output rates were reduced by 82% and 35%, respectively, in chow-fed Abcg5−/− mice compared with wild-type mice. When mice were infused with the hydrophilic BS tauroursodeoxycholate, similar relative increases in bile flow, BS output, PL output, and total sterol output were observed in wild-type, Abcg5+/−, and Abcg5−/− mice. Maximal cholesterol and PL output rates in Abcg5−/− mice were only 15% and 69%, respectively, of wild-type values. An infusion of increasing amounts of the hydrophobic BS taurodeoxycholate increased cholesterol excretion by 3.0- and 2.4-fold in wild-type and Abcg5−/− mice but rapidly induced cholestasis in Abcg5−/− mice. Treatment with the liver X receptor (LXR) agonist T0901317 increased the maximal sterol excretion capacity in wild-type mice (fourfold), concomitant with the induction of Abcg5/ Abcg8 expression, but not in Abcg5−/− mice. In a separate study, mice were fed chow containing 1% (wt/wt) cholesterol. As expected, hepatic expression of Abcg5 and Abcg8 was strongly induced (fivefold and fourfold) in wild-type but not LXR-α-deficient ( Lxra−/−) mice. Surprisingly, hepatobiliary cholesterol excretion was increased to the same extent, i.e., 2.2-fold in wild-type mice and 2.0-fold in Lxra−/− mice, upon cholesterol feeding. Our data confirm that Abcg5, as part of the Abcg5/Abcg8 heterodimer, strongly controls hepatobiliary cholesterol secretion in mice. However, our data demonstrate that Abcg5/Abcg8 heterodimer-independent, inducible routes exist that can significantly contribute to total hepatobiliary cholesterol output.


2017 ◽  
Vol 46 (6) ◽  
pp. 501-517 ◽  
Author(s):  
Jin Ho Hwang ◽  
Seung Hee Yang ◽  
Yong Chul Kim ◽  
Jin Hyuk Kim ◽  
Jung Nam An ◽  
...  

Background: Periostin is responsible for tissue regeneration, fibrosis, and wound healing via its interaction with integrin. Recently, the role of periostin has been shown to contribute to fibrosis in chronic kidney disease. We investigated the role of periostin and the effect of periostin blockade in renal fibrogenesis. Methods: We investigated the function of periostin in vivo in wild-type and periostin-null mice (Postn-KO) in a unilateral ureteral obstruction (UUO) model. For the in vitro experiments, primary cultured inner medullary collecting duct cells from the wild-type and Postn-KO mice were used. Results: Periostin expression was strongly induced by UUO in the wild-type mice. UUO induced renal fibrosis and morphological changes in the obstructed kidney of wild-type mice, whereas global knockout of periostin reduced fibrosis induced by UUO and improved kidney structure. Fibrosis- and inflammation-related mRNA were significantly induced in the wild-type mice and were decreased in the Postn-KO mice. Additionally, α-smooth muscle actin expression was increased following the administration of recombinant periostin in vitro. The effect of periostin blockade was examined using 2 methods. The integrin blockade peptide decreased fibrosis-related gene expression in in vitro experiments. Anti-periostin polyclonal antibody attenuated renal fibrosis induced by UUO through changes in transforming growth factor-β signaling and the inflammatory and apoptotic pathways. Conclusion: Periostin is a marker of renal fibrosis and may augment the progression of fibrogenesis as an extracellular matrix protein. Periostin blockade effectively attenuated renal fibrogenesis. Thus, periostin inhibition may be a therapeutic strategy for the amelioration of renal disease progression.


2008 ◽  
Vol 86 (6) ◽  
pp. 329-336 ◽  
Author(s):  
Yuqiang Ge ◽  
Yufeng Huang ◽  
Donald E. Kohan

Renal collecting duct (CD)-specific knockout of endothelin-1 (ET-1) causes hypertension and impaired Na excretion. A previous study noted failure to suppress the renin–angiotensin–aldosterone axis in these knockout (KO) mice, hence the current investigation was undertaken to examine the role of this system in CD ET-1 KO. Renal renin content was similar in kidneys from CD ET-1 KO and control mice during normal Na intake; high-Na intake suppressed renal renin content to a similar degree in KO and control. Plasma renin concentrations paralleled changes in renal renin content. Valsartan, an angiotensin receptor blocker (ARB), abolished the hypertension in CD ET-1 KO mice during normal Na intake. High-Na intake + ARB treatment increased blood pressure in CD ET-1 KO, but not in controls. High-Na intake was associated with reduced Na excretion in CD ET-1 KO animals, but no changes in water excretion or creatinine clearance were noted. Spironolactone, an aldosterone antagonist, also normalized blood pressure in CD ET-1 KO mice during normal Na intake, whereas high-Na intake + spironolactone raised blood pressure only in CD ET-1 KO animals. In summary, hypertension in CD ET-1 KO is partly due to angiotensin II and aldosterone. We speculate that CD-derived ET-1 may regulate, via a novel pathway, renal renin production.


2013 ◽  
Vol 304 (3) ◽  
pp. F279-F288 ◽  
Author(s):  
Lijun Li ◽  
R. Mayuri Garikepati ◽  
Susanna Tsukerman ◽  
Donald Kohan ◽  
James B. Wade ◽  
...  

To elucidate the role of the insulin receptor (IR) in collecting duct (CD), we bred mice with IR selectively deleted from CD principal cells using an aquaporin-2 promoter to drive Cre-recombinase expression. Young, adult male knockout (KO) mice had altered plasma and electrolyte homeostasis under high- (HS) and low-sodium (LS) diets, relative to wild-type (WT) littermates. One week of LS feeding led to a significant reduction in urine potassium (K+) and sodium (Na+) excretion in KO, and a reduction in the ratio of Na+ to chloride (Cl−) in plasma, relative to WT. HS diet (1 wk) increased plasma K+ and reduced urine Na+ to Cl− ratio in the KO. Furthermore, KO mice had a significantly ( P = 0.025) blunted natriuretic response to benzamil, an epithelial sodium channel (ENaC) antagonist. Western blotting of cortex homogenates revealed modestly, but significantly (∼15%), lower band density for the β-subunit of ENaC in the KO vs. WT mice, with no differences for the α- or γ-subunits. Moreover, blood pressure (BP), measured by radiotelemetry, was significantly lower in KO vs. WT mice under basal conditions (mmHg): 112 ± 5 (WT), 104 ± 2 (KO), P = 0.023. Chronic insulin infusion reduced heart rate in the WT, but not in the KO, and modestly reduced BP in the WT only. Overall, these results support a fundamental role for insulin through its classic receptor in the modulation of electrolyte homeostasis and BP.


2018 ◽  
Vol 315 (5) ◽  
pp. F1271-F1282 ◽  
Author(s):  
Sundeep Malik ◽  
Emily Lambert ◽  
Junhui Zhang ◽  
Tong Wang ◽  
Heather L. Clark ◽  
...  

To better understand the role of the inward-rectifying K channel Kir4.1 (KCNJ10) in the distal nephron, we initially studied a global Kir4.1 knockout mouse (gKO), which demonstrated the hypokalemia and hypomagnesemia seen in SeSAME/EAST syndrome and was associated with reduced Na/Cl cotransporter (NCC) expression. Lethality by ~3 wk, however, limits the usefulness of this model, so we developed a kidney-specific Kir4.1 “knockdown” mouse (ksKD) using a cadherin 16 promoter and Cre-loxP methodology. These mice appeared normal and survived to adulthood. Kir4.1 protein expression was decreased ~50% vs. wild-type (WT) mice by immunoblotting, and immunofluorescence showed moderately reduced Kir4.1 staining in distal convoluted tubule that was minimal or absent in connecting tubule and cortical collecting duct. Under control conditions, the ksKD mice showed metabolic alkalosis and relative hypercalcemia but were normokalemic and mildly hypermagnesemic despite decreased NCC expression. In addition, the mice had a severe urinary concentrating defect associated with hypernatremia, enlarged kidneys with tubulocystic dilations, and reduced aquaporin-3 expression. On a K/Mg-free diet for 1 wk, however, ksKD mice showed marked hypokalemia (serum K: 1.5 ± 0.1 vs. 3.0 ± 0.1 mEq/l for WT), which was associated with renal K wasting (transtubular K gradient: 11.4 ± 0.8 vs. 1.6 ± 0.4 in WT). Phosphorylated-NCC expression increased in WT but not ksKD mice on the K/Mg-free diet, suggesting that loss of NCC adaptation underlies the hypokalemia. In conclusion, even modest reduction in Kir4.1 expression results in impaired K conservation, which appears to be mediated by reduced expression of activated NCC.


2019 ◽  
Vol 316 (1) ◽  
pp. F128-F133 ◽  
Author(s):  
Felix Knauf ◽  
Heino Velazquez ◽  
Victoria Pfann ◽  
Zhirong Jiang ◽  
Peter S. Aronson

The apical membrane Cl−/oxalate exchanger SLC26A6 has been demonstrated to play a role in proximal tubule NaCl transport based on studies in microperfused tubules. The present study is directed at characterizing the role of SLC26A6 in NaCl homeostasis in vivo under physiological conditions. Free-flow micropuncture studies revealed that volume and Cl− absorption were similar in surface proximal tubules of wild-type and Slc26a6−/− mice. Moreover, the increments in urine flow rate and sodium excretion following thiazide and furosemide infusion were identical in wild-type and Slc26a6−/− mice, indicating no difference in NaCl delivery out of the proximal tubule. The absence of an effect of deletion of SLC26A6 on NaCl homeostasis was further supported by the absence of lower blood pressure in Slc26a6−/− compared with wild-type mice on normal or low-salt diets. Moreover, raising plasma and urine oxalate by feeding mice a diet enriched in soluble oxalate did not affect mean blood pressure. In contrast to the lack of effect of SLC26A6 deletion on NaCl homeostasis, fractional excretion of oxalate was reduced from 1.6 in wild-type mice to 0.7 in Slc26a6−/− mice. We conclude that, although SLC26A6 is dispensable for renal NaCl homeostasis, it is required for net renal secretion of oxalate.


Sign in / Sign up

Export Citation Format

Share Document