Coordinate control of prostaglandin E2 synthesis and uptake by hyperosmolarity in renal medullary interstitial cells

2006 ◽  
Vol 290 (3) ◽  
pp. F641-F649 ◽  
Author(s):  
Michael L. Pucci ◽  
Shinichi Endo ◽  
Teruhisa Nomura ◽  
Run Lu ◽  
Cho Khine ◽  
...  

During water deprivation, prostaglandin E2 (PGE2), formed by renal medullary interstitial cells (RMICs), feedback inhibits the actions of antidiuretic hormone. Interstitial PGE2 concentrations represent the net of both PGE2 synthesis by cyclooxygenase (COX) and PGE2 uptake by carriers such as PGT. We used cultured RMICs to examine the effects of hyperosmolarity on both PG synthesis and PG uptake in the same RMIC. RMICs expressed endogenous PGT as assessed by mRNA and immunoblotting. RMICs rapidly took up [3H]PGE2 to a level 5- to 10-fold above background and with a characteristic time-dependent “overshoot.” Inhibitory constants ( Ki) for various PGs and PGT inhibitors were similar between RMICs and the cloned rat PGT. Increasing extracellular hyperosmolarity to the range of 335–485 mosM increased the net release of PGE2 by RMICs, an effect that was concentration dependent, maximal by 24 h, reversible, and associated with increased expression of COX-2. Over the same time period, there was decreased cell-surface activity of PGT due to internalization of the transporter. With continued exposure to hyperosmolarity over 7–10 days, PGE2 release remained elevated, COX-2 returned to baseline, and PGT-mediated uptake became markedly reduced. Our findings suggest that hyperosmolarity induces coordinated changes in COX-2-mediated PGE2 synthesis and PGT-mediated PGE2 uptake in RMICs.

2001 ◽  
Vol 120 (5) ◽  
pp. A573-A573
Author(s):  
J SHODA ◽  
T ASANO ◽  
T KAWAMOTO ◽  
Y MATSUZAKI ◽  
N TANAKA ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Coral García-Pastor ◽  
Selma Benito-Martínez ◽  
Ricardo J. Bosch ◽  
Ana B. Fernández-Martínez ◽  
Francisco J. Lucio-Cazaña

AbstractProximal tubular cells (PTC) are particularly vulnerable to hypoxia-induced apoptosis, a relevant factor for kidney disease. We hypothesized here that PTC death under hypoxia is mediated by cyclo-oxygenase (COX-2)-dependent production of prostaglandin E2 (PGE2), which was confirmed in human proximal tubular HK-2 cells because hypoxia (1% O2)-induced apoptosis (i) was prevented by a COX-2 inhibitor and by antagonists of prostaglandin (EP) receptors and (ii) was associated to an increase in intracellular PGE2 (iPGE2) due to hypoxia-inducible factor-1α-dependent transcriptional up-regulation of COX-2. Apoptosis was also prevented by inhibitors of the prostaglandin uptake transporter PGT, which indicated that iPGE2 contributes to hypoxia-induced apoptosis (on the contrary, hypoxia/reoxygenation-induced PTC death was exclusively due to extracellular PGE2). Thus, iPGE2 is a new actor in the pathogenesis of hypoxia-induced tubular injury and PGT might be a new therapeutic target for the prevention of hypoxia-dependent lesions in renal diseases.


2021 ◽  
Vol 11 (13) ◽  
pp. 6055
Author(s):  
Akhtar Ali ◽  
En-Hyung Kim ◽  
Jong-Hyun Lee ◽  
Kang-Hyun Leem ◽  
Shin Seong ◽  
...  

Prolonged inflammation results in chronic diseases that can be associated with a range of factors. Medicinal plants and herbs provide synergistic benefits based on the interaction of multiple phytochemicals. The dried root of Scutellaria baicalensis Georgi and its compounds possess anti-inflammatory, anti-oxidative, and anticancer effects. Processing is a traditional method to achieve clinical benefits by improving therapeutic efficacy and lowering toxicity. In this study, we investigated the anti-inflammatory and anti-oxidant effect of processed Scutellaria baicalensis Georgi extract (PSGE) against lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Data using Griess assay and ELISA showed that PSGE decreased nitric oxide and prostaglandin E2 (PGE2) levels against LPS. PSGE treatment up-regulated 15-hydroxyprostaglandin dehydrogenase (PGDH), while cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 expression did not change. Interestingly, PGE2 inhibition was regulated by prostaglandin catabolic enzyme 15-PGDH rather than COX-2/mPGES-1, enzymes essential for PGE2 synthesis. Additionally, PSGE-suppressed LPS-induced IL-6 and TNF-α production through NF-κB signaling. NF-κB release from an inactive complex was inhibited by HO-1 which blocked IκBα phosphorylation. The ROS levels lowered by PSGE were measured with the H2DCFDA probe. PSGE activated NRF2 signaling and increased antioxidant Hmox1, Nqo1, and Txn1 gene expression, while reducing KEAP1 expression. In addition, pharmacological inhibition of HO-1 confirmed that the antioxidant enzyme induction by PSGE was responsible for ROS reduction. In conclusion, PSGE demonstrated anti-inflammatory and anti-oxidant effects due to NRF2/HO-1-mediated NF-κB and ROS inhibition.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1103.2-1103
Author(s):  
C. Edenius ◽  
G. Ekström ◽  
J. Kolmert ◽  
R. Morgenstern ◽  
P. Stenberg ◽  
...  

Background:Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the formation prostaglandin (PG) E2from cyclooxygenase derived PGH2(1, 2). Inhibition of mPGES-1 leads to reduction of pro-inflammatory PGE2, while in vessels there is a concomitant increase of vasoprotective prostacyclin (PGI2) via shunting of PGH2(3,4). Apart from relieving symptoms in experimental animal models of inflammation, inhibitors of mPGES-1 cause relaxation of human medium sized arteries(4)and resistance arteries(5). The prostaglandin profile following mPGES-1 inhibition, explains the anti-inflammatory effects and also opens for the possibility of treating inflammatory diseases with concomitant vasculopathies. GS-248 is a potent and selective inhibitor of mPGES-1 exhibiting sub-nanomolar IC50in human whole bloodex vivo.Objectives:To evaluate safety, tolerability, pharmacokinetics and pharmacodynamics of GS-248.Methods:Healthy males and females (age 18–73 years) were included in the study. Six cohorts were administrated single oral doses of 1-300mg GS-248 (n=36) or placebo (n=12), three cohorts were administered once daily doses of 20-180mg GS-248 (n=18) or placebo (n=12) over ten days. In addition, 8 subjects were treated in a separate cohort with 200mg celecoxib bid for ten days. Blood samples were drawn for measurement of GS-248 exposure and production of PGE2after LPS incubationex vivo. The content of PGE2and PGI2metabolites was measured in urine. All analyses were performed by LC-MS/MS.Results:GS-248 was safe and well tolerated at all tested dose levels. Maximum plasma concentration was achieved 1 - 2.5 hours after dosing, and half-life was about 10 hours. Induced PGE2formationex vivo,catalyzed by mPGES-1, was completely inhibited for 24 hours after a single low dose (40mg) of GS-248. In urine, GS-248 dose-dependently reduced the excretion of PGE2metabolite by more than 50% whereas the excretion of PGI2metabolite increased more than twice the baseline levels. In the celecoxib cohort urinary metabolites of both PGE2and PGI2were reduced with approx 50%.Conclusion:GS-248 at investigated oral doses was safe and well tolerated. There was a sustained inhibition of LPS induced PGE2formation in whole blood. In urine, there was a metabolite shift showing reduced PGE2and increased PGI2, while celecoxib reduced both PGE2and PGI2metabolites. This suggests that selective inhibition of mPGES-1 results in systemic shunting of PGH2to PGI2formation, leading to anti-inflammatory and vasodilatory effects, while preventing platelet activation. The results warrant further evaluation of GS-248 in inflammatory conditions with vasculopathies such as Digital Ulcers and Raynaud’s Phenomenon in Systemic Sclerosis.References:[1]Korotkova M, Jakobsson PJ. Persisting eicosanoid pathways in rheumatic diseases. Nat Rev Rheumatol. 2014;10:229-41[2]Bergqvist F, Morgenstern R, Jakobsson PJ. A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat. 2019;147:106383[3]Kirkby NS, et al. Mechanistic definition of the cardiovascular mPGES-1/COX-2/ADMA axis. Cardiovasc Res. 2020[4]Ozen G, et al. Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI2: a safer alternative to COX-2 inhibition. Br J Pharmacol. 2017;174:4087-98[5]Larsson K, et al. Biological characterization of new inhibitors of microsomal PGE synthase-1 in preclinical models of inflammation and vascular tone. Br J Pharmacol. 2019;176:4625-38Disclosure of Interests:Charlotte Edenius Shareholder of: Gesynta Pharma, Consultant of: Gesynta Pharma,, Gunilla Ekström Shareholder of: Gesynta Pharma, Consultant of: Gesynta Pharma,, Johan Kolmert Consultant of: Gesynta Pharma,, Ralf Morgenstern Shareholder of: Gesynta Pharma, Employee of: Gesynta Pharma, Patric Stenberg Shareholder of: Gesynta Pharma, Employee of: Gesynta Pharma, Per-Johan Jakobsson Shareholder of: Gesynta Pharma, Grant/research support from: Gesynta Pharma, AstraZeneca,, Göran Tornling Shareholder of: Gesynta Pharma, Vicore Pharma,, Consultant of: Gesynta Pharma, Vicore Pharma, AnaMar


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jia-jia Qian ◽  
Qi Xu ◽  
Wei-min Xu ◽  
Ren Cai ◽  
Gui-cheng Huang

Abstract Background Anterior cruciate ligament transection surgery (ACLT)-induced OA model was often used to investigate the molecular mechanism of knee osteoarthritis (KOA). Researches have shown that vascular endothelial growth factor (VEGF) played an important role in OA. The present study aimed to investigate the pathological changes after ACLT surgery and reveal the expression characteristics of the VEGF-A/VEGFR2 signaling pathway in this model. Methods Moderate KOA model was established by ACLT, and 1, 2, 4, 8, and 12 weeks after surgery, hematoxylin-eosin (HE) and Safranin-O(S-O) staining were used to detect the pathological changes in mouse knee cartilage, and the matrix biomarkers A Disintegrin and Metalloproteinase with Thrombospondin Motifs 5(ADAMTS5), Collagen II (COL-II) were detected using immunohistochemistry (IHC), CD31 was detected by immunofluorescence (IF) to show the vascular invasion in cartilage, and proteins expression of VEGF-A pathway were detected by Western blot (WB). Meanwhile, the inflammatory biomarkers cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in cartilage were detected by WB. Results ACLT surgery can lead to degeneration of cartilage in mice, and the characteristics of the lesion were time-dependent. The ADAMTS5-positive cells increased while COL-II decreased in OA cartilage with time, and new blood vessels labeled by CD31 can be seen from 1 week in OA cartilage, and increased in 8 and 12 weeks. The expression of VEGF-A, VEGFR2, COX-2, and iNOS were higher than control groups, which were basically consistent with the degree of osteoarthritis. Conclusions The degenerative degree of articular cartilage was time-dependent; angiogenesis and inflammation were important pathological changes of cartilage in KOA. The expression of the VEGF-A/VEGFR2 signaling pathway was basically correlated with the degree of KOA.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Megumi Kobayashi ◽  
Kenta Watanabe ◽  
Satoshi Yokoyama ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

Capsaicin, a transient receptor potential vanilloid type 1 (TRPV1) ligand, regulates nerve-related pain-sensitive signals, inflammation, and cancer growth. Capsaicin suppresses interleukin-1-induced osteoclast differentiation, but its roles in bone tissues and bone diseases are not known. This study examined the effects of capsaicin on inflammatory bone resorption and prostaglandin E (PGE) production induced by lipopolysaccharide (LPS) in vitro and on bone mass in LPS-treated mice in vivo. Capsaicin suppressed osteoclast formation, bone resorption, and PGE production induced by LPS in vitro. Capsaicin suppressed the expression of cyclooxygenase-2 (COX-2) and membrane-bound PGE synthase-1 (mPGES-1) mRNAs and PGE production induced by LPS in osteoblasts. Capsaicin may suppress PGE production by inhibiting the expression of COX-2 and mPGES-1 in osteoblasts and LPS-induced bone resorption by TRPV1 signals because osteoblasts express TRPV1. LPS treatment markedly induced bone loss in the femur in mice, and capsaicin significantly restored the inflammatory bone loss induced by LPS in mice. TRPV1 ligands like capsaicin may therefore be potentially useful as clinical drugs targeting bone diseases associated with inflammatory bone resorption.


2008 ◽  
Vol 175 (2-3) ◽  
pp. 193-197 ◽  
Author(s):  
Rufeng Bai ◽  
Lihua Wan ◽  
Meisen Shi
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hiroyuki Kitamura ◽  
Hiroko Urano ◽  
Toshiaki Ara

Periodontal disease is accompanied by inflammation of the gingiva and destruction of periodontal tissues, leading to alveolar bone loss in severe clinical cases. The chemical mediator prostaglandin E2 (PGE2) and cytokines such as interleukin- (IL-)6 and IL-8 have been known to play important roles in inflammatory responses and tissue degradation. In the present study, we investigated the effects of a kampo medicine, kakkonto (TJ-1), on the production of prostaglandin E2 (PGE2), IL-6, and IL-8 by human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Kakkonto concentration dependently suppressed LPS-induced PGE2 production but did not alter basal PGE2 levels. In contrast, kakkonto significantly increased LPS-induced IL-6 and IL-8 production. Kakkonto decreased cyclooxygenase- (COX-)1 activity to approximately 70% at 1 mg/mL but did not affect COX-2 activity. Kakkonto did not affect cytoplasmic phospholipase A2 (cPLA2), annexin1, or LPS-induced COX-2 expression. Kakkonto suppressed LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation, which is known to lead to ERK activation and cPLA2 phosphorylation. These results suggest that kakkonto decreased PGE2 production by inhibition of ERK phosphorylation which leads to inhibition of cPLA2 phosphorylation and its activation. Therefore, kakkonto may be useful to improve gingival inflammation in periodontal disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Chan Lee ◽  
Gyu Hwan Park ◽  
Eun Mi Ahn ◽  
Chan-Ik Park ◽  
Jung-Hee Jang

Ultraviolet (UV) radiation has been reported to induce cutaneous inflammation such as erythema and edema via induction of proinflammatory enzymes and mediators.Sargassum fulvellumis a brown alga of Sargassaceae family which has been demonstrated to exhibit antipyretic, analgesic, antiedema, antioxidant, antitumor, fibrinolytic, and hepatoprotective activities. The purpose of this study is to investigate anti-inflammatory effects of ethylacetate fraction of ethanol extract ofSargassum fulvellum(SFE-EtOAc) in HaCaT keratinocytes and BALB/c mice. In HaCaT cells, SFE-EtOAc effectively inhibited UVB-induced cytotoxicity (60 mJ/cm2) and the expression of proinflammatory proteins such as cyclooxygenase-2 (COX-2), tumor necrosis factor-α(TNF-α), and inducible nitric oxide synthase (iNOS). Furthermore, SFE-EtOAc significantly reduced UVB-induced production of proinflammatory mediators including prostaglandin E2(PGE2) and nitric oxide (NO). In BALB/c mice, topical application of SFE-EtOAc prior to UVB irradiation (200 mJ/cm2) effectively suppressed the UVB-induced protein expression of COX-2, iNOS, and TNF-αand subsequently attenuated generation of PGE2and NO as well. In another experiment, SFE-EtOAc pretreatment suppressed UVB-induced reactive oxygen species production and exhibited an antioxidant potential by upregulation of antioxidant enzymes such as catalase and Cu/Zn-superoxide dismutase in HaCaT cells. These results suggest that SFE-EtOAc could be an effective anti-inflammatory agent protecting against UVB irradiation-induced skin damages.


Stroke ◽  
2012 ◽  
Vol 43 (7) ◽  
pp. 1964-1967 ◽  
Author(s):  
David Hasan ◽  
Tomoki Hashimoto ◽  
David Kung ◽  
R. Loch Macdonald ◽  
H. Richard Winn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document