scholarly journals An Af9 cis-element directly targets Dot1a to mediate transcriptional repression of the αENaC gene

2013 ◽  
Vol 304 (4) ◽  
pp. F367-F375 ◽  
Author(s):  
Wenzheng Zhang ◽  
Zhiyuan Yu ◽  
Hongyu Wu ◽  
Lihe Chen ◽  
Qun Kong ◽  
...  

The epithelial Na+ channel subunit-α ( αENaC) of the distal nephron is essential for salt balance. We previously demonstrated that the histone methyltransferase Dot1a and its protein partner Af9 basally repress αENaC transcription in mouse inner medullary collecting duct type 3 (mIMCD3) cells and link aldosterone-elicited chromatin modifications to αENaC transcriptional activation. Af9 DNA-binding activity has never been demonstrated, and whether and where Af9 binds to the αENaC promoter to target Dot1a are unknown. The present study sought to identify functional Af9 cis-element(s) in the −57/+439 “R3” subregion of αENaC, the principal site for Dot1a-Af9 interaction, in mIMCD3 cells. We also exploited connecting tubule/collecting duct-specific Dot1l-deficient mice ( Dot1l AC) to determine the impact of Dot1l inactivation on renal αENaC expression in vivo. mIMCD3 cell lines expressing αENaC promoter-reporter constructs harboring deletion of +74/+107 demonstrated greatly reduced association of Af9 and Dot1a by ChIP/qPCR. Aldosterone treatment resulted in further decrements in Af9 and Dot1a association with the αENaC promoter. Gel shift and antibody competition assays using wild-type and mutant oligomers revealed Af9-containing +78/+92 αENaC DNA-protein complexes in nuclear extracts of mIMCD3 cells. Mutation of the +78/+92 element resulted in higher basal αENaC promoter activity and impaired Dot1a-mediated inhibition in trans-repression assays. In agreement, mice with connecting tubule/collecting duct-specific knockout of Dot1l exhibited greater αENaC mRNA levels in kidney compared with control. Thus, we conclude that +78/+92 of αENaC represents the primary Af9 binding site involved in recruiting Dot1a to repress basal and aldosterone-sensitive αENaC transcription and that Dot1l inactivation promotes αENaC mRNA expression by eliminating Dot1a-mediated repression.

Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 245-255 ◽  
Author(s):  
M. Van Doren ◽  
H.M. Ellis ◽  
J.W. Posakony

In Drosophila, a group of regulatory proteins of the helix-loop-helix (HLH) class play an essential role in conferring upon cells in the developing adult epidermis the competence to give rise to sensory organs. Proteins encoded by the daughterless (da) gene and three genes of the achaete-scute complex (AS-C) act positively in the determination of the sensory organ precursor cell fate, while the extramacrochaetae (emc) and hairy (h) gene products act as negative regulators. In the region upstream of the achaete gene of the AS-C, we have identified three ‘E box’ consensus sequences that are bound specifically in vitro by hetero-oligomeric complexes consisting of the da protein and an AS-C protein. We have used this DNA-binding activity to investigate the biochemical basis of the negative regulatory function of emc. Under the conditions of our experiments, the emc protein, but not the h protein, is able to antagonize specifically the in vitro DNA-binding activity of da/AS-C and putative da/da protein complexes. We interpret these results as follows: the heterodimerization capacity of the emc protein (conferred by its HLH domain) allows it to act in vivo as a competitive inhibitor of the formation of functional DNA-binding protein complexes by the da and AS-C proteins, thereby reducing the effective level of their transcriptional regulatory activity within the cell.


1993 ◽  
Vol 13 (4) ◽  
pp. 2091-2103
Author(s):  
S Türkel ◽  
P J Farabaugh

Transcription of the Ty2-917 retrotransposon of Saccharomyces cerevisiae is modulated by a complex set of positive and negative elements, including a negative region located within the first open reading frame, TYA2. The negative region includes three downstream repression sites (DRSI, DRSII, and DRSIII). In addition, the negative region includes at least two downstream activation sites (DASs). This paper concerns the characterization of DASI. A 36-bp DASI oligonucleotide acts as an autonomous transcriptional activation site and includes two sequence elements which are both required for activation. We show that these sites bind in vitro the transcriptional activation protein GCN4 and that their activity in vivo responds to the level of GCN4 in the cell. We have termed the two sites GCN4 binding sites (GBS1 and GBS2). GBS1 is a high-affinity GCN4 binding site (dissociation constant, approximately 25 nM at 30 degrees C), binding GCN4 with about the affinity of a consensus UASGCN4, this though GBS1 includes two differences from the right half of the palindromic consensus site. GBS2 is more diverged from the consensus and binds GCN4 with about 20-fold-lower affinity. Nucleotides 13 to 36 of DASI overlap DRSII. Since DRSII is a transcriptional repression site, we tested whether DASI includes repression elements. We identify two sites flanking GBS2, both of which repress transcription activated by the consensus GCN4-specific upstream activation site (UASGCN4). One of these is repeated in the 12 bp immediately adjacent to DASI. Thus, in a 48-bp region of Ty2-917 are interspersed two positive and three negative transcriptional regulators. The net effect of the region must depend on the interaction of the proteins bound at these sites, which may include their competing for binding sites, and on the physiological control of the activity of these proteins.


2000 ◽  
Vol 20 (8) ◽  
pp. 2676-2686 ◽  
Author(s):  
Andrew W. Snowden ◽  
Lisa A. Anderson ◽  
Gill A. Webster ◽  
Neil D. Perkins

ABSTRACT The transcriptional coactivators p300 and CREB binding protein (CBP) are important regulators of the cell cycle, differentiation, and tumorigenesis. Both p300 and CBP are targeted by viral oncoproteins, are mutated in certain forms of cancer, are phosphorylated in a cell cycle-dependent manner, interact with transcription factors such as p53 and E2F, and can be found complexed with cyclinE-Cdk2 in vivo. Moreover, p300-deficient cells show defects in proliferation. Here we demonstrate that transcriptional activation by both p300 and CBP is stimulated by coexpression of the cyclin-dependent kinase inhibitor p21WAF/CIP1. Significantly this stimulation is independent of both the inherent histone acetyltransferase (HAT) activity of p300 and CBP and of the previously reported carboxyl-terminal binding site for cyclinE-Cdk2. Rather, we describe a previously uncharacterized transcriptional repression domain (CRD1) within p300. p300 transactivation is stimulated through derepression of CRD1 by p21. Significantly p21 regulation of CRD1 is dependent on the nature of the core promoter. We suggest that CRD1 provides a novel mechanism through which p300 and CBP can switch activities between the promoters of genes that stimulate growth and those that enhance cell cycle arrest.


2001 ◽  
Vol 21 (14) ◽  
pp. 4453-4459 ◽  
Author(s):  
Riaz Mahmood ◽  
Bidyottam Mittra ◽  
Jane C. Hines ◽  
Dan S. Ray

ABSTRACT The Crithidia fasciculata cycling sequence binding protein (CSBP) binds with high specificity to sequence elements in several mRNAs that accumulate periodically during the cell cycle. Mutations in these sequence elements abolish both cycling of the mRNA and binding of CSBP. Two genes, CSBPA andCSBPB, encoding putative subunits of CSBP have been cloned and were found to be present in tandem on the same DNA molecule and to be closely related. CSBPA andCSBPB are predicted to encode proteins with sizes of 35.6 and 42.0 kDa, respectively. Both CSBPA and CSBPB proteins have a predicted coiled-coil domain near the N terminus and a novel histidine and cysteine motif near the C terminus. The latter motif is conserved in other trypanosomatid species. Gel sieving chromatography and glycerol gradient sedimentation results indicate that CSBP has a molecular mass in excess of 200 kDa and an extended structure. Recombinant CSBPA and CSBPB also bind specifically to the cycling sequence and together can be reconstituted to give an RNA gel shift similar to that of purified CSBP. Proteins in cell extracts bind to an RNA probe containing six copies of the cycling sequence. The RNA-protein complexes contain both CSBPA and CSBPB, and the binding activity cycles in near synchrony with target mRNA levels.CSBPA and CSBPB mRNA and protein levels show little variation throughout the cell cycle, suggesting that additional factors are involved in the cyclic binding to the cycling sequence elements.


2005 ◽  
Vol 25 (1) ◽  
pp. 324-335 ◽  
Author(s):  
Ho-Geun Yoon ◽  
Youngsok Choi ◽  
Philip A. Cole ◽  
Jiemin Wong

ABSTRACT A central question in histone code theory is how various codes are recognized and utilized in vivo. Here we show that TBL1 and TBLR1, two WD-40 repeat proteins in the corepressor SMRT/N-CoR complexes, are functionally redundant and essential for transcriptional repression by unliganded thyroid hormone receptors (TR) but not essential for transcriptional activation by liganded TR. TBL1 and TBLR1 bind preferentially to hypoacetylated histones H2B and H4 in vitro and have a critical role in targeting the corepressor complexes to chromatin in vivo. We show that targeting SMRT/N-CoR complexes to the deiodinase 1 gene (D1) requires at least two interactions, one between unliganded TR and SMRT/N-CoR and the other between TBL1/TBLR1 and hypoacetylated histones. Neither interaction alone is sufficient for the stable association of the corepressor complexes with the D1 promoter. Our data support a feed-forward working model in which deacetylation exerted by initial unstable recruitment of SMRT/N-CoR complexes via their interaction with unliganded TR generates a histone code that serves to stabilize their own recruitment. Similarly, we find that targeting of the Sin3 complex to pericentric heterochromatin may also follow this model. Our studies provide an in vivo example that a histone code is not read independently but is recognized in the context of other interactions.


Development ◽  
1999 ◽  
Vol 126 (1) ◽  
pp. 191-200 ◽  
Author(s):  
S.G. Kramer ◽  
T.M. Jinks ◽  
P. Schedl ◽  
J.P. Gergen

Runt functions as a transcriptional regulator in multiple developmental pathways in Drosophila melanogaster. Recent evidence indicates that Runt represses the transcription of several downstream target genes in the segmentation pathway. Here we demonstrate that runt also functions to activate transcription. The initial expression of the female-specific sex-determining gene Sex-lethal in the blastoderm embryo requires runt activity. Consistent with a role as a direct activator, Runt shows sequence-specific binding to multiple sites in the Sex-lethal early promoter. Using an in vivo transient assay, we demonstrate that Runt's DNA-binding activity is essential for Sex-lethal activation in vivo. These experiments further reveal that increasing the dosage of runt alone is sufficient for triggering the transcriptional activation of Sex-lethal in males. In addition, a Runt fusion protein, containing a heterologous transcriptional activation domain activates Sex-lethal expression, indicating that this regulation is direct and not via repression of other repressors. Moreover, we demonstrate that a small segment of the Sex-lethal early promoter that contains Runt-binding sites mediates Runt-dependent transcriptional activation in vivo.


2017 ◽  
Vol 49 (8) ◽  
pp. 416-429 ◽  
Author(s):  
Ivana Mižíková ◽  
Francesco Palumbo ◽  
Tamás Tábi ◽  
Susanne Herold ◽  
István Vadász ◽  
...  

Lysyl oxidases are credited with pathogenic roles in lung diseases, including cancer, fibrosis, pulmonary hypertension, congenital diaphragmatic hernia, and bronchopulmonary dysplasia (BPD). Lysyl oxidases facilitate the covalent intra- and intermolecular cross-linking of collagen and elastin fibers, thereby imparting tensile strength to the extracellular matrix (ECM). Alternative ECM-independent roles have recently been proposed for lysyl oxidases, including regulation of growth factor signaling, chromatin remodeling, and transcriptional regulation, all of which impact cell phenotype. We demonstrate here that three of the five lysyl oxidase family members, Lox, Loxl1, and Loxl2, are highly expressed in primary mouse lung fibroblasts compared with other constituent cell types of the lung. Microarray analyses revealed that small interfering RNA knockdown of Lox, Loxl1, and Loxl2 was associated with apparent changes in the expression of 134, 3,761, and 3,554 genes, respectively, in primary mouse lung fibroblasts. The impact of lysyl oxidase expression on steady-state Mmp3, Mmp9, Eln, Rarres1, Gdf10, Ifnb1, Csf2, and Cxcl9 mRNA levels was validated, which is interesting, since the corresponding gene products are relevant to lung development and BPD, where lysyl oxidases play a functional role. In vivo, the expression of these genes broadly correlated with Lox, Loxl1, and Loxl2 expression in a mouse model of BPD. Furthermore, β-aminopropionitrile (BAPN), a selective lysyl oxidase inhibitor, did not affect the steady-state mRNA levels of lysyl oxidase target genes, in vitro in lung fibroblasts or in vivo in BAPN-treated mice. This study is the first to report that lysyl oxidases broadly influence the cell transcriptome.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


1997 ◽  
Vol 273 (4) ◽  
pp. L814-L824 ◽  
Author(s):  
Zhou Zhu ◽  
Weiliang Tang ◽  
Jack M. Gwaltney ◽  
Yang Wu ◽  
Jack A. Elias

Neutrophil infiltration is a well-documented early event in the pathogenesis of rhinovirus (RV) infections. To further understand the mechanisms responsible for this neutrophilia, we determined whether interleukin (IL)-8 was present at sites of experimental RV infection in vivo and characterized the mechanism(s) by which RV stimulates IL-8 production in vitro. IL-8 was readily detectable in the nasal washings of all normal volunteers and did not increase with sham nasal inoculation. In contrast, RV infection caused a significant additional increase in nasal IL-8, the levels of which peaked 48–72 h after virus inoculation. RV was a potent stimulator of IL-8 protein production by A549 epithelial-like cells, MRC-5 fibroblasts, and normal human bronchial epithelial cells in vitro. This induction was associated with a significant increase in IL-8 mRNA accumulation and gene transcription. RV also stimulated IL-8 promoter-driven luciferase activity. This stimulation was significantly decreased by mutation of the nuclear factor (NF)-IL-6 site and was completely abrogated by mutation of the NF-κB site in this promoter. In addition, NF-κB-DNA binding activity was rapidly induced in RV-infected cells. This inducible binding was made up of p65 and, to a lesser extent, p50 NF-κB moieties. These studies demonstrate that IL-8 is present in normal nasal secretions and that the levels of IL-8 are further increased after RV infection. They also demonstrate that RVs are potent stimulators of IL-8 production and that this induction is mediated, at least in part, by an NF-κB-dependent transcriptional activation pathway. IL-8 may contribute to the pathogenesis of RV infection, and NF-κB activation may be a central event in RV-induced pathologies.


Author(s):  
Takayuki Shimizu ◽  
Yuuki Hayashi ◽  
Munehito Arai ◽  
Shawn E McGlynn ◽  
Tatsuru Masuda ◽  
...  

Abstract Reactive sulfur species (RSS) are involved in bioactive regulation via persulfidation of proteins. However, how cells regulate RSS-based signaling and RSS metabolism is poorly understood, despite the importance of universal regulation systems in biology. We previously showed that the persulfide-responsive transcriptional factor SqrR acts as a master regulator of sulfide-dependent photosynthesis in proteobacteria. Here, we demonstrated that SqrR also binds heme at a near one-to-one ratio with a binding constant similar to other heme-binding proteins. Heme does not change the DNA-binding pattern of SqrR to the target gene promoter region; however, DNA-binding affinity of SqrR is reduced by the binding of heme, altering its regulatory activity. Circular dichroism spectroscopy clearly showed secondary structural changes in SqrR by the heme binding. Incremental change in the intracellular heme concentration is associated with small, but significant reduction in the transcriptional repression by SqrR. Overall, these results indicate that SqrR has an ability to bind heme to modulate its DNA-binding activity, which may be important for the precise regulation of RSS metabolism in vivo.


Sign in / Sign up

Export Citation Format

Share Document