Inhibition of aldosterone-induced antinatriuresis and kaliuresis by actinomycin D

1984 ◽  
Vol 246 (2) ◽  
pp. F201-F204 ◽  
Author(s):  
J. D. Horisberger ◽  
J. Diezi

The effects of actinomycin D on short-term response to aldosterone on sodium and potassium urinary excretion were investigated in adrenalectomized glucocorticoid-substituted anesthetized rats. Aldosterone alone (1 microgram/kg followed by sustained intravenous infusion of 1 microgram X kg-1 X h-1) entailed a simultaneous antinatriuretic and kaliuretic effect after a latent period of 30-60 min. Actinomycin D (300 micrograms/kg) administered intravenously 30 min before aldosterone inhibited both the aldosterone-induced kaliuresis and antinatriuresis and the concomitant changes in plasma potassium concentration. The administration of actinomycin D alone enhanced sodium excretion in the first hour and then induced kaliuresis. These results favor the hypothesis that mineralocorticoid effects of aldosterone on sodium and potassium excretion are closely linked and may be dependent on the same mechanisms.

BMJ ◽  
2019 ◽  
pp. l772 ◽  
Author(s):  
Martin O’Donnell ◽  
Andrew Mente ◽  
Sumathy Rangarajan ◽  
Matthew J McQueen ◽  
Neil O’Leary ◽  
...  

AbstractObjectiveTo evaluate the joint association of sodium and potassium urinary excretion (as surrogate measures of intake) with cardiovascular events and mortality, in the context of current World Health Organization recommendations for daily intake (<2.0 g sodium, >3.5 g potassium) in adults.DesignInternational prospective cohort study.Setting18 high, middle, and low income countries, sampled from urban and rural communities.Participants103 570 people who provided morning fasting urine samples.Main outcome measuresAssociation of estimated 24 hour urinary sodium and potassium excretion (surrogates for intake) with all cause mortality and major cardiovascular events, using multivariable Cox regression. A six category variable for joint sodium and potassium was generated: sodium excretion (low (<3 g/day), moderate (3-5 g/day), and high (>5 g/day) sodium intakes) by potassium excretion (greater/equal or less than median 2.1 g/day).ResultsMean estimated sodium and potassium urinary excretion were 4.93 g/day and 2.12 g/day, respectively. After a median follow-up of 8.2 years, 7884 (6.1%) participants had died or experienced a major cardiovascular event. Increasing urinary sodium excretion was positively associated with increasing potassium excretion (unadjusted r=0.34), and only 0.002% had a concomitant urinary excretion of <2.0 g/day of sodium and >3.5 g/day of potassium. A J-shaped association was observed of sodium excretion and inverse association of potassium excretion with death and cardiovascular events. For joint sodium and potassium excretion categories, the lowest risk of death and cardiovascular events occurred in the group with moderate sodium excretion (3-5 g/day) and higher potassium excretion (21.9% of cohort). Compared with this reference group, the combinations of low potassium with low sodium excretion (hazard ratio 1.23, 1.11 to 1.37; 7.4% of cohort) and low potassium with high sodium excretion (1.21, 1.11 to 1.32; 13.8% of cohort) were associated with the highest risk, followed by low sodium excretion (1.19, 1.02 to 1.38; 3.3% of cohort) and high sodium excretion (1.10, 1.02 to 1.18; 29.6% of cohort) among those with potassium excretion greater than the median. Higher potassium excretion attenuated the increased cardiovascular risk associated with high sodium excretion (P for interaction=0.007).ConclusionsThese findings suggest that the simultaneous target of low sodium intake (<2 g/day) with high potassium intake (>3.5 g/day) is extremely uncommon. Combined moderate sodium intake (3-5 g/day) with high potassium intake is associated with the lowest risk of mortality and cardiovascular events.


1975 ◽  
Vol 49 (6) ◽  
pp. 613-616 ◽  
Author(s):  
L. E. Ramsay ◽  
R. M. Auty ◽  
C. E. Horth ◽  
D. Levine ◽  
J. R. Shelton ◽  
...  

1. The relations between the concentration of plasma uric acid and urinary excretion of aldosterone, sodium and potassium, were studied in ten healthy males on a diet containing 160 mmol of sodium and 90 mmol of potassium per day. 2. Plasma uric acid correlated positively with aldosterone excretion and this correlation was statistically independent of sodium and potassium excretion. 3. Plasma uric acid correlated positively with potassium excretion and negatively with the urinary sodium/potassium ratio. There was no significant simple correlation with sodium excretion but the partial correlation of plasma uric acid and sodium excretion was negative and significant when excretion of aldosterone and potassium were held constant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaofu Du ◽  
Le Fang ◽  
Jianwei Xu ◽  
Xiangyu Chen ◽  
Yamin Bai ◽  
...  

AbstractThe direction and magnitude of the association between sodium and potassium excretion and blood pressure (BP) may differ depending on the characteristics of the study participant or the intake assessment method. Our objective was to assess the relationship between BP, hypertension and 24-h urinary sodium and potassium excretion among Chinese adults. A total of 1424 provincially representative Chinese residents aged 18 to 69 years participated in a cross-sectional survey in 2017 that included demographic data, physical measurements and 24-h urine collection. In this study, the average 24-h urinary sodium and potassium excretion and sodium-to-potassium ratio were 3811.4 mg/day, 1449.3 mg/day, and 4.9, respectively. After multivariable adjustment, each 1000 mg difference in 24-h urinary sodium excretion was significantly associated with systolic BP (0.64 mm Hg; 95% confidence interval [CI] 0.05–1.24) and diastolic BP (0.45 mm Hg; 95% CI 0.08–0.81), and each 1000 mg difference in 24-h urinary potassium excretion was inversely associated with systolic BP (− 3.07 mm Hg; 95% CI − 4.57 to − 1.57) and diastolic BP (− 0.94 mm Hg; 95% CI − 1.87 to − 0.02). The sodium-to-potassium ratio was significantly associated with systolic BP (0.78 mm Hg; 95% CI 0.42–1.13) and diastolic BP (0.31 mm Hg; 95% CI 0.10–0.53) per 1-unit increase. These associations were mainly driven by the hypertensive group. Those with a sodium intake above about 4900 mg/24 h or with a potassium intake below about 1000 mg/24 h had a higher risk of hypertension. At higher but not lower levels of 24-h urinary sodium excretion, potassium can better blunt the sodium-BP relationship. The adjusted odds ratios (ORs) of hypertension in the highest quartile compared with the lowest quartile of excretion were 0.54 (95% CI 0.35–0.84) for potassium and 1.71 (95% CI 1.16–2.51) for the sodium-to-potassium ratio, while the corresponding OR for sodium was not significant (OR, 1.28; 95% CI 0.83–1.98). Our results showed that the sodium intake was significantly associated with BP among hypertensive patients and the inverse association between potassium intake and BP was stronger and involved a larger fraction of the population, especially those with a potassium intake below 1000 mg/24 h should probably increase their potassium intake.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2345
Author(s):  
Masayuki Okuda ◽  
Satoshi Sasaki

The identification of sodium and potassium intake in youths is an important step to preventing the increase of blood pressure in childhood. We examined food intake and estimated mineral intake using a brief-type self-administered diet history questionnaire (BDHQ) to test its validity as a comparison with urinary excretion in Japanese youths. The subjects were 5th and 8th graders (n = 2377), who completed the BDHQ and permitted the use of their overnight urine specimens. Sodium intake was poorly associated with sodium excretion (Rho = 0.048), and the coefficients of dietary potassium and a sodium-to-potassium molar ratio were 0.091–0.130. Higher soybean paste (miso) intake and pickles were significantly associated with higher sodium excretion (p ≤ 0.005). However, these foods were positively associated with potassium excretion (p = 0.002–0.012), and not associated with an excreted sodium-to-potassium ratio. Fruits and dairy products were positively associated (p ≤ 0.048), whereas beverages were negatively associated with potassium excretion (p ≤ 0.004). The association of the sodium-to-potassium ratio was opposite to that of potassium (p ≤ 0.001). The choice of foods, potassium, and the sodium-to-potassium ratio assessed using the BDHQ are available as part of health education for youths, but the assessment of sodium intake in population levels should be carefully conducted.


1987 ◽  
Vol 252 (1) ◽  
pp. F60-F64 ◽  
Author(s):  
L. Rossetti ◽  
G. Klein-Robbenhaar ◽  
G. Giebisch ◽  
D. Smith ◽  
R. DeFronzo

The effect of insulin on renal potassium excretion was examined by employing the euglycemic insulin clamp technique in combination with renal clearance measurements. While euglycemia was maintained, insulin was infused at rates of 4.8 (n = 7) and 12 (n = 5) mU X kg-1 X min-1. Steady-state plasma insulin levels of 164 +/- 8 and 370 +/- 15 microU/ml were achieved in the low- and high-dose studies, respectively. Base-line plasma potassium concentration declined progressively by a mean of 0.14 +/- 0.09 (P less than 0.05) and 0.40 +/- 0.05 meq/liter (P less than 0.01) during the low- and high-dose insulin infusion protocols. Urinary potassium excretion did not change significantly from base line with either insulin dose. Because the decline in plasma potassium concentration could have masked a stimulatory effect of insulin on UKV, six rats received a 12-mU X kg-1 X min-1 euglycemic insulin clamp in combination with an exogenous potassium infusion to maintain the plasma potassium concentration constant at the basal level (4.03 +/- 0.03 vs. 4.05 +/- 0.05 meq/l). Under these conditions of normokalemia, insulin augmented UKV 2.4-fold, from 0.20 +/- 0.05 to 0.48 +/- 0.04 meq/l (P less than 0.001).


1984 ◽  
Vol 246 (6) ◽  
pp. F772-F778 ◽  
Author(s):  
D. B. Young ◽  
T. E. Jackson ◽  
U. Tipayamontri ◽  
R. C. Scott

The effects of changes in sodium intake on the steady-state relationship between plasma potassium concentration and potassium excretion were studied in 15 chronically adrenalectomized dogs. Throughout the experiments the dogs received aldosterone at a rate of 50 micrograms/day and methylprednisolone at 1 mg/day. The relationship between plasma potassium and steady-state potassium excretion was obtained by changing potassium intake from 10 to 30 to 100 meq/day, each level being maintained for 7-10 days. At the conclusion of each period at a given level of potassium intake, plasma potassium and excretion were measured and plotted, plasma potassium being the independent variable. Such a relationship was obtained while the dogs were on three different levels of sodium intake: 10, 100, and 200 meq/day. The curves from the data obtained at 100 and 200 meq/day sodium intake both were shifted to the left of the curve obtained at 10 meq/day (P less than 0.05), although the 100 and 200 meq/day curves were not different from each other. On the basis of these data one could predict that, at a plasma potassium concentration of 4.0 meq/liter, the animals would excrete potassium at a rate of 17 meq/day on a 10 meq/day sodium intake, 37 meq/day on a 100 meq/day sodium intake, and 47 meq/day on a 200 meq/day sodium intake. Urine flow and electrolyte concentration data are consistent with the hypothesis that the sodium intake effect on potassium excretion was mediated through increases in distal nephron flow rate and decreases in distal nephron potassium concentration.


1987 ◽  
Vol 252 (4) ◽  
pp. E454-E460 ◽  
Author(s):  
M. Schambelan ◽  
A. Sebastian ◽  
B. A. Katuna ◽  
E. Arteaga

We examined the effect of chronic metabolic acidosis on adrenocortical hormone production by administering NH4Cl for 5 days to four normal subjects. Plasma aldosterone concentration, aldosterone secretion, and urinary excretion of aldosterone-18-glucuronide increased significantly, whereas there were no significant changes in the plasma concentrations of cortisol, corticosterone, or deoxycorticosterone, or in the urinary excretion of 17-hydroxycorticoids. By day 2, plasma renin activity (PRA) and concentration (PRC) were not significantly different from control, and the slope of the regression line relating plasma aldosterone concentration to PRA was significantly greater than the slope in the control period, i.e., the sensitivity of aldosterone secretion to renin stimulation was increased. By day 5, however, PRA and PRC were increased above control. Plasma potassium concentration did not change significantly. Thus chronic NH4Cl-induced acidosis induces a sustained stimulation of aldosterone secretion in the absence of a change in adrenocorticotropin-dependent adrenocortical hormone secretion. Factors other than an increase in renin secretion and plasma potassium concentration may be involved in at least the early phase of aldosterone stimulation, suggesting that plasma hydrogen ion concentration might be a separate regulator of aldosterone secretion.


1980 ◽  
Vol 59 (s6) ◽  
pp. 161s-164s ◽  
Author(s):  
P. S. Parfrey ◽  
P. Wright ◽  
J. M. Ledingham

1. The diurnal excretion of sodium and potassium was observed in young people, with and without a genetic predisposition to hypertension, both in the presence and absence of psychological stress. 2. In the absence of stress, the normal day/night sodium excretion ratio was reversed in the children of hypertensive parents. This was significantly less than day/night sodium excretion in children of normotensive parents. A similar finding was observed for day/night potassium excretion. 3. There was a significant negative correlation between systolic blood pressure and day/night sodium excretion in children of hypertensive parents but not in children of normotensive parents. 4. After the mental stress of a University examination day/night sodium reverted to normal in children of hypertensive parents.


1959 ◽  
Vol 197 (3) ◽  
pp. 565-567 ◽  
Author(s):  
L. L. Langley ◽  
W. A. Beall ◽  
J. A. Smith

The intravenous administration of 20 u of ACTH in a single injection alters the flow and composition of parotid saliva in the dog. The flow was increased 44%, sodium concentration 75% and the potassium concentration decreased 19%. These alterations do not occur in the adrenalectomized dog. Aldosterone increased the sodium concentration only 20%, decreased the potassium level 6.3% and had an insignificant influence on flow. The intravenous infusion of sodium decreases parotid flow whereas potassium increases it. It is concluded that these alterations represent a direct influence of the electrolytes on the gland since adrenalectomy has no influence on this response. It is suggested that parotid function is changed by the infusion of these electrolytes due to the alteration of the intra-extracellular gradients. The adrenal steroids may have a similar effect.


1962 ◽  
Vol 203 (2) ◽  
pp. 283-285 ◽  
Author(s):  
James W. Archdeacon ◽  
Harold C. Rohrs

Sodium and potassium contents of marrow cells, blood cells, and plasma were measured in normal rabbits and rabbits injected subcutaneously with phenylhydrazine to determine if small quantities of this chemical affected the ability of the blood and marrow cells to maintain their normal levels of these ions. There was a decrease in potassium content of red blood cells within 24 hr after administration of the compound, followed subsequently by a slight rise in plasma potassium. Apparently any effect was closely related to the time of blood sampling after the last injection, recovery occurring within several days if injections were not repeated at frequent intervals. The sodium and potassium analyses of normal bone marrow cells revealed differences in ionic concentration dissimilar to normal blood cells, the average sodium concentrations being higher and potassium concentrations lower in the former cells. Separation of marrow cells into three groups by prolonged centrifugation demonstrated a progressive increase in sodium and a decrease in potassium concentration from the lower to the upper stratum, possibly indicating a greater degree of ionic pumping in the more dense cells.


Sign in / Sign up

Export Citation Format

Share Document