Whole-cell potassium currents in single early distal tubule cells

1988 ◽  
Vol 255 (4) ◽  
pp. F699-F703 ◽  
Author(s):  
M. Hunter ◽  
H. Oberleithner ◽  
R. M. Henderson ◽  
G. Giebisch

The apical membrane potassium conductance of amphibian early distal tubules is sensitive to changes in the intracellular pH, with cellular acidification causing a decreased conductance. With the whole-cell patch-clamp technique, we have measured the total potassium conductance of single isolated early distal tubule cells of the frog. With symmetrical potassium gluconate solutions, the whole-cell current was found to be strongly rectifying, with an inward conductance of 12.9 nS (at intracellular pH between 7.6 and 8.0) and an outward conductance of 1.0 nS. The inward current was almost totally inhibited by the addition of 10 mM Ba2+ to the bath solution. The use of pipette solutions with pH between 7.0 and 8.0 showed a positive correlation between intracellular pH and conductance. In contrast, acidification of the extracellular solution caused no significant change in conductance.

1990 ◽  
Vol 259 (6) ◽  
pp. C1005-C1009 ◽  
Author(s):  
A. M. Hurst ◽  
M. Hunter

Intracellular pH is a well-established modulator of the apical membrane potassium conductance of the amphibian diluting segment (early distal tubule). We investigated the modulation of this apical potassium conductance at the single-channel level in everted early distal tubules of the frog. Alkalinization of the bath fluid increased mean channel open probability (NPo) both in the presence and absence of the potassium-hydrogen ionophore nigericin. Reciprocal changes were seen with acidification. Because these effects were observed in cell-attached patches, where the composition of the fluid in the pipette is assumed to remain constant, the observed changes in channel activity were attributed to changes in intracellular pH. Further analysis of the data revealed that the changes in channel activity were produced exclusively by changes in the functional number of channels within the patch (N). We were unable to detect any significant changes in the single-channel open probability (Po). This suggests that the density of channels within a membrane may be far more dynamic than previously assumed.


1995 ◽  
Vol 268 (1) ◽  
pp. F64-F72 ◽  
Author(s):  
T. Nakahari ◽  
Y. Marunaka

The effect of antidiuretic hormone (ADH) on a distal nephron cell line (A6) was studied using the whole cell patch-clamp technique. A6 cells were cultured on a permeable support filter for 10-14 days in media containing 10% fetal bovine serum without supplemental aldosterone. In the unstimulated condition A6 cells had very small conductances of Na+,K+, and Cl-. Arginine vasotocin (AVT, 140 mU/ml, 280 nM) evoked a "transient" increase in whole cell currents as did dibutyryl-adenosine 3',5'-cyclic monophosphate (5 mM). These transients consisted of two components; one was the nonselective cation conductance, and the other was the Cl- conductance. Activation of these conductances was dependent on intracellular Cl- concentration ([Cl-]i). At low [Cl-]i (< or = 50 mM) both conductances were activated, whereas when [Cl-]i was 80 mM, only the Cl- conductance was activated. At high [Cl-]i (125 mM), both conductances were inhibited. It seems likely that the [Cl-]i maintained at a low level (< or = 50 mM) is an important requirement for A6 cells to respond to AVT.


2021 ◽  
Vol 22 (4) ◽  
pp. 1858
Author(s):  
Waheed Shabbir ◽  
Nermina Topcagic ◽  
Mohammed Aufy ◽  
Murat Oz

Tumor necrosis factor (TNF) is known to activate the epithelial Na+ channel (ENaC) in A549 cells. A549 cells are widely used model for ENaC research. The role of δ-ENaC subunit in TNF-induced activation has not been studied. In this study we hypothesized that δ-ENaC plays a major role in TNF-induced activation of ENaC channel in A549 cells which are widely used model for ENaC research. We used CRISPR/Cas 9 approach to knock down (KD) the δ-ENaC in A549 cells. Western blot and immunofluorescence assays were performed to analyze efficacy of δ-ENaC protein KD. Whole-cell patch clamp technique was used to analyze the TNF-induced activation of ENaC. Overexpression of wild type δ-ENaC in the δ-ENaC KD of A549 cells restored the TNF-induced activation of whole-cell Na+ current. Neither N-linked glycosylation sites nor carboxyl terminus domain of δ-ENaC was necessary for the TNF-induced activation of whole-cell Na+ current in δ-ENaC KD of A549 cells. Our data demonstrated that in A549 cells the δ-ENaC plays a major role in TNF-induced activation of ENaC.


1995 ◽  
Vol 269 (1) ◽  
pp. C156-C162 ◽  
Author(s):  
T. Nakahari ◽  
Y. Marunaka

The whole cell patch-clamp technique was used to study ionic conductances in fetal distal lung epithelial (FDLE) cells. In unstimulated FDLE cells, K+ conductances were detected in lowered intracellular Cl- concentration ([Cl-]i, < or = 50 mM). The whole cell currents of FDLE cells were increased by elevation of intracellular Ca2+ concentration ([Ca2+]i) or intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration ([cAMP]i). The elevation of [Ca2+]i activated the K+ currents. The amiloride-blockable whole cell currents were activated by [cAMP]i of 1 mM with [Cl-]i of 20 mM and were more frequently detected in the pipette solution without ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) than with it (0.5 mM). When the [Cl-]i was fixed at 50 or 145 mM, however, the increase in these currents was not detected even with cAMP and without EGTA. The amiloride-blockable currents were detected in both the Na+ and K+ pipette solutions. Thus the increase in amiloride-blockable whole cell currents was due to the activation of nonselective cation channels. In FDLE cells treated with terbutaline, which is a beta 2-adrenergic receptor agonist, or forskolin, these currents were detected in the pipette solution containing 20 mM Cl- but were suppressed with time when the pipette solution contained 50 or 145 mM Cl-. It seems likely that maintenance of [Cl-]i at the lowered level is an important requirement for the FDLE cells to activate the amiloride-blockable whole cell currents. It is proposed that cellular mechanisms, such as cell shrinkage, exist to reduce the [Cl-]i in response to cAMP.


2000 ◽  
Vol 83 (4) ◽  
pp. 2349-2354 ◽  
Author(s):  
Ansalan Stewart ◽  
Robert C. Foehring

Our previous studies of calcium (Ca2+) currents in cortical pyramidal cells revealed that the percentage contribution of each Ca2+ current type to the whole cell Ca2+ current varies from cell to cell. The extent to which these currents are modulated by neurotransmitters is also variable. This study was directed at testing the hypothesis that a major source of this variability is recording from multiple populations of pyramidal cells. We used the whole cell patch-clamp technique to record from dissociated corticocortical, corticostriatal, and corticotectal projecting pyramidal cells. There were significant differences between the three pyramidal cell types in the mean percentage of L-, P-, and N-type Ca2+ currents. For both N- and P-type currents, the range of percentages expressed was small for corticostriatal and corticotectal cells as compared with cells which project to the corpus callosum or to the general population. The variance was significantly different between cell types for N- and P-type currents. These results suggest that an important source of the variability in the proportions of Ca2+ current types present in neocortical pyramidal neurons is recording from multiple populations of pyramidal cells.


1993 ◽  
Vol 102 (5) ◽  
pp. 859-869 ◽  
Author(s):  
N B Datyner ◽  
I S Cohen

We have examined slow inactivation of L-type calcium current in canine Purkinje myocytes with the whole cell patch clamp technique. Slow inactivation is voltage dependent. It is negligible at -50 mV but can inactivate more than half of available iCaL at -10 mV. There are two major consequences of this slow inactivation. First, standard protocols for the measurement of T-type current can dramatically overestimate its contribution to total calcium current, and second, the position and steepness of the inactivation versus voltage curve for iCaL will depend on the method of measurement. Given the widespread attempts to identify calcium current components and characterize them biophysically, an important first step should be to determine the extent of slow inactivation of calcium current in each preparation.


2011 ◽  
Vol 35 (5) ◽  
pp. 500-506 ◽  
Author(s):  
Naoki Oshima ◽  
Hiroo Kumagai ◽  
Kamon Iigaya ◽  
Hiroshi Onimaru ◽  
Akira Kawai ◽  
...  

2006 ◽  
Vol 2006 ◽  
pp. 1-7 ◽  
Author(s):  
Daniel Granfeldt ◽  
Olle Harbecke ◽  
Åse Björstad ◽  
Anna Karlsson ◽  
Claes Dahlgren

We have investigated calcium-induced secretion in human neutrophils, using a whole-cell patch-clamp technique. Mobilization of subcellular granules to the cell membrane was followed as the change in membrane capacitance (△Cm). Both the magnitude and the kinetics of the response differed between low and high concentrations of Ca2+. A sustained secretion following a short lag phase was induced by high concentrations of Ca2+(100μM and higher). A stable plateau was reached after 5–7 minutes at△Cmvalues corresponding to values expected after all specific as well as azurophil granules have been mobilized. Capacitance values of the same magnitude could be obtained also at lower Ca2+concentrations, but typically no stable plateau was reached within the measuring time. In contrast to previous studies, we were unable to detect any pattern of secretion corresponding to a distinct submaximal response or selective mobilization of granule subsets specified by their Ca2+-sensitivity.


Sign in / Sign up

Export Citation Format

Share Document