Cellular distribution of 125I-endothelin-1 binding in rat kidney following in vivo labeling

1994 ◽  
Vol 267 (5) ◽  
pp. F845-F852 ◽  
Author(s):  
R. Dean ◽  
J. Zhuo ◽  
D. Alcorn ◽  
D. Casley ◽  
F. A. Mendelsohn

Endothelin-1 (ET-1) receptors have previously been demonstrated in the rat kidney by in vitro autoradiography and in cultured renal cell lines by radioreceptor assay, but the precise cellular localization of these receptors under in vivo conditions remains to be determined. We performed electron microscopic autoradiography on rat kidney following intravenous administration of 125I-labeled ET-1. In vivo autoradiographs revealed binding patterns identical to those previously demonstrated following in vitro labeling. Light microscopic autoradiography showed that silver grains occurred exclusively overlaying glomeruli and peritubular capillaries in the cortex, inner stripe of the outer medulla, and the inner medulla. At the electron microscopic level, ET-1 binding was specifically localized to the fenestrated endothelium of glomerular and peritubular capillaries, and to a lesser extent to the vasa recta. No significant grains were seen on mesangial or visceral epithelial cells; nor were any seen on the cells of proximal tubule, the thick and thin limbs of the loop of Henle, the medullary collecting ducts, and renal interstitial cells. These results indicate that the endothelial cells of glomerular and peritubular capillaries are the primary target for the circulating ET-1 in the rat kidney and suggest an autocrine and/or paracrine function of locally synthesized ET-1 in vivo in both physiological and pathophysiological states.

1997 ◽  
Vol 153 (1) ◽  
pp. 49-59 ◽  
Author(s):  
M P Arpin-Bott ◽  
E Waltisperger ◽  
M J Freund-Mercier ◽  
M E Stoeckel

Abstract The localization of oxytocin (OT)-binding sites in the developing rat kidney and their pharmacological characterization were investigated by means of autoradiographic techniques. The cellular localization was studied by application of the histoautoradiographic technique to (1) frozen sections and semithin sections from kidney slices incubated in vitro in the presence of a 125I-labelled OT antagonist and (2) frozen and semithin sections from kidneys after in vivo systemic infusion of the radioligand. Pharmacological characteristics were determined in competition experiments by using quantitative film autoradiography. Specific OT-binding sites were first detected at embryonic day 17 (E17) in the cortex. At early stages up to postnatal days (PN30), the cortical OT-binding sites were highly concentrated on the juxta- and paraglomerular portion of the distal tubule; in the adult they were restricted to the macula densa. In the medulla, OT-binding sites were first detected at E19 when this region is forming; they were localized on the thin limb of Henle's loop. These data obtained by in vitro binding were confirmed by in vivo binding at PN30 which showed, in addition, the presence in one rat of OT-binding sites in the inner stripe of the outer medulla. At all stages examined (PN15 to PN90), cortical OT-binding sites had a higher selectivity for OT versus vasopressin (IC50=0·78 ± 0·04 nm and 8 ± 0·5 nm respectively at PN90) than medullary sites (IC50= 1·9 ± 0·27 nm and 2±1·13 nm respectively at PN90). These data suggest that the OT-binding sites of the macula densa and thin Henle's loop, detected in the rat kidney, represent two subtypes of OT receptors which could mediate distinct effects of OT on kidney function. Journal of Endocrinology (1997) 153, 49–59


1996 ◽  
Vol 271 (4) ◽  
pp. L519-L526 ◽  
Author(s):  
M. A. Olman ◽  
W. L. Simmons ◽  
D. J. Pollman ◽  
A. Y. Loftis ◽  
A. Bini ◽  
...  

Bleomycin lung injury in mice leads to an acute alveolitis followed by a fibroproliferative response characterized by the accumulation of extracellular matrix. Because distinct regions of the fibrin(ogen) molecule have unique in vitro biological effects on cells, we quantified, localized, and biochemically characterized the molecular form of extravascular fibrin(ogen) in methoxyflurane anesthetized, bleomycin-injured mice. Bleomycin or saline (controls) was administered intratracheally, and lung tissue was harvested and analyzed at several times thereafter. Immunoreactive fibrin tissue content increased to a maximal 50-fold over controls in a temporal and spatial pattern paralleling that of alveolitis and maximal fibroproliferation. The generation of gamma-gamma-chain dimers and alpha-chain polymers, together with the loss of free alpha- and gamma-chains, indicates that the fibrin is predominantly covalently cross-linked. In fibroproliferative-phase lungs, the fibrin fibrils are branched and colocalize with those of collagen at the electron microscopic level. These observations strongly suggest that fibrin is a significant molecular effector of the in vivo fibroproliferative response after lung injury.


1978 ◽  
Vol 33 (1) ◽  
pp. 351-362
Author(s):  
P. Schick ◽  
F. Trepel ◽  
K.H. Maisel ◽  
W. Past ◽  
I. Reisert ◽  
...  

After continuous 3H-TdR infusion in vivo or incubation with 3H-TdR in vitro human blood lymphocytes were examined by light-microscopic and electron-microscopic autoradiography. Using relatively long autoradiographic exposure times (50–300 days) not only nuclear but also cytoplasmic labelling was visualized, the cytoplasmic label being present in up to 96% of the cells. The cytoplasmic label was predominantly associated with the mitochondria and was removed from the cells nearly completely by treatment with DNase but not with RNase or cold perchloric acid. It is concluded that this cytoplasmic label mainly represents 3H-TdR incorporated into mitochondrial DNA which is continuously renewed in an average turnover time of 14 days or less. This value is compatible with a turnover time of 11 days for mitochondrial DNA in mammalian cells reported in the literature.


Author(s):  
S.K. Aggarwal

The proposed primary mechanism of action of the anticancer drug cisplatin (Cis-DDP) is through its interaction with DNA, mostly through DNA intrastrand cross-links or DNA interstrand cross-links. DNA repair mechanisms can circumvent this arrest thus permitting replication and transcription to proceed. Various membrane transport enzymes have also been demonstrated to be effected by cisplatin. Glycoprotein alkaline phosphatase was looked at in the proximal tubule cells before and after cisplatin both in vivo and in vitro for its inactivation or its removal from the membrane using light and electron microscopy.Outbred male Swiss Webster (Crl: (WI) BR) rats weighing 150-250g were given ip injections of cisplatin (7mg/kg). Animals were killed on day 3 and day 5. Thick slices (20-50.um) of kidney tissue from treated and untreated animals were fixed in 1% buffered glutaraldehyde and 1% formaldehyde (0.05 M cacodylate buffer, pH 7.3) for 30 min at 4°C. Alkaline phosphatase activity and carbohydrates were demonstrated according to methods described earlier.


Author(s):  
Gustav Ofosu

Platinum-thymine has been found to be a potent antitumor agent, which is quite soluble in water, and lack nephrotoxicity as the dose-limiting factor. The drug has been shown to interact with DNA and inhibits DNA, RNA and protein synthesis in mammalian cells in vitro. This investigation was undertaken to elucidate the cytotoxic effects of piatinum-thymine on sarcoma-180 cells in vitro ultrastructurally, Sarcoma-180 tumor bearing mice were treated with intraperitoneal injection of platinum-thymine 40mg/kg. A concentration of 60μg/ml dose of platinum-thymine was used in in vitro experiments. Treatments were at varying time intervals of 3, 7 and 21 days for in vivo experiments, and 30, 60 and 120 min., 6, 12, and 24th in vitro. Controls were not treated with platinum-thymine.Electron microscopic analyses of the treated cells in vivo and in vitro showed drastic cytotoxic effect.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Abhishek Kumar ◽  
Minati Choudhury ◽  
Sakshi Dhingra Batra ◽  
Kriti Sikri ◽  
Anushree Gupta

Abstract Objective Endothelin-1 plays an important role in the pathogenesis of severe pulmonary hypertension. The + 139 ‘A’, adenine insertion variant in 5′UTR of edn1 gene has been reported to be associated with increased expression of Endothelin-1 in vitro. The aim of present study was to explore the association of this variant with the circulating levels of Endothelin-1 in vivo using archived DNA and plasma samples from 38 paediatric congenital heart disease (cyanotic and acyanotic) patients with severe pulmonary hypertension. Results The plasma Endothelin-1 levels were highly varied ranging from 1.63 to75.16 pg/ml. The + 139 ‘A’ insertion variant in 5′UTR of edn1 was seen in 8 out of 38 cases with only one acyanotic sample demonstrating homozygosity of inserted ‘A’ allele at + 139 site (4A/4A genotype). The plasma Endothelin-1 levels in children with homozygous variant 3A/3A genotype were comparable in cyanotic and acyanotic groups. Lone 4A/4A acyanotic sample had ET-1 levels similar to the median value of ET-1 associated with 3A/3A genotype and was absent in cyanotic group presumably due to deleterious higher ET-1 levels. The discussed observations, limited by the small sample size, are suggestive of homozygous adenine insertion variant posing a risk in cyanotic babies with Severe Pulmonary Hypertension.


1997 ◽  
Vol 139 (1) ◽  
pp. 193-204 ◽  
Author(s):  
Peter Mundel ◽  
Hans W. Heid ◽  
Thomas M. Mundel ◽  
Meike Krüger ◽  
Jochen Reiser ◽  
...  

Synaptopodin is an actin-associated protein of differentiated podocytes that also occurs as part of the actin cytoskeleton of postsynaptic densities (PSD) and associated dendritic spines in a subpopulation of exclusively telencephalic synapses. Amino acid sequences determined in purified rat kidney and forebrain synaptopodin and derived from human and mouse brain cDNA clones show no significant homology to any known protein. In particular, synaptopodin does not contain functional domains found in receptor-clustering PSD proteins. The open reading frame of synaptopodin encodes a polypeptide with a calculated Mr of 73.7 kD (human)/74.0 kD (mouse) and an isoelectric point of 9.38 (human)/9.27 (mouse). Synaptopodin contains a high amount of proline (∼20%) equally distributed along the protein, thus virtually excluding the formation of any globular domain. Sequence comparison between human and mouse synaptopodin revealed 84% identity at the protein level. In both brain and kidney, in vivo and in vitro, synaptopodin gene expression is differentiation dependent. During postnatal maturation of rat brain, synaptopodin is first detected by Western blot analysis at day 15 and reaches maximum expression in the adult animal. The exclusive synaptopodin synthesis in the telencephalon has been confirmed by in situ hybridization, where synaptopodin mRNA is only found in perikarya of the olfactory bulb, cerebral cortex, striatum, and hippocampus, i.e., the expression is restricted to areas of high synaptic plasticity. From these results and experiments with cultured cells we conclude that synaptopodin represents a novel kind of proline-rich, actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and podocyte foot processes.


1980 ◽  
Vol 8 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Bengt Harvig ◽  
Johan Norl�n
Keyword(s):  

2001 ◽  
Vol 204 (2) ◽  
pp. 217-227
Author(s):  
J.A. Albertus ◽  
R.O. Laine

Many aquatic organisms are resistant to environmental pollutants, probably because their inherent multi-drug-resistant protein extrusion pump (pgp) can be co-opted to handle man-made pollutants. This mechanism of multixenobiotic resistance is similar to the mechanism of multidrug resistance exhibited in chemotherapy-resistant human tumor cells. In the present study, a variety of techniques were used to characterize this toxin defense system in killifish (Fundulus heteroclitus) hepatocytes. The cellular localization and activity of the putative drug efflux system were evaluated. In addition, in vitro and in vivo studies were used to examine the range of expression of this putative drug transporter in the presence of environmental and chemotherapeutic toxins. The broad range of pgp expression generally observed in transformed mammalian cells was found in normal cells of our teleost model. Our findings suggest that the expression of the pgp gene in the killifish could be an excellent indicator of toxin levels or stressors in the environment.


Sign in / Sign up

Export Citation Format

Share Document