scholarly journals Use of serial analysis of gene expression to generate kidney expression libraries

2000 ◽  
Vol 279 (2) ◽  
pp. F383-F392 ◽  
Author(s):  
M. Ashraf El-Meanawy ◽  
Jeffrey R. Schelling ◽  
Fatima Pozuelo ◽  
Matthew M. Churpek ◽  
Eckhard K. Ficker ◽  
...  

Chronic renal disease initiation and progression remain incompletely understood. Genome-wide expression monitoring should clarify mechanisms that cause progressive renal disease by determining how clusters of genes coordinately change their activity. Serial analysis of gene expression (SAGE) is a technique of expression profiling, which permits simultaneous, comparative, and quantitative analysis of gene-specific, 9- to 13-bp sequence tags. Using SAGE, we have constructed a tag expression library from ROP-+/+ mouse kidney. Tag sequences were sorted by abundance, and identity was determined by sequence homology searching. Analyses of 3,868 tags yielded 1,453 unique kidney transcripts. Forty-two percent of these transcripts matched mRNA sequence entries with known function, 35% of the transcripts corresponded to expressed sequence tag (EST) entries or cloned genes, whose function has not been established, and 23% represented unidentified genes. Previously characterized transcripts were clustered into functional groups, and those encoding metabolic enzymes, plasma membrane proteins (transporters/receptors), and ribosomal proteins were most abundant (39, 14, and 12% of known transcripts, respectively). The most common, kidney-specific transcripts were kidney androgen-regulated protein (4% of all transcripts), sodium-phosphate cotransporter (0.3%), renal cytochrome P-450 (0.3%), parathyroid hormone receptor (0.1%), and kidney-specific cadherin (0.1%). Comprehensively characterizing and contrasting gene expression patterns in normal and diseased kidneys will provide an alternative strategy to identify candidate pathways, which regulate nephropathy susceptibility and progression, and novel targets for therapeutic intervention.

2018 ◽  
Vol 115 (21) ◽  
pp. 5492-5497 ◽  
Author(s):  
Iskander Said ◽  
Ashley Byrne ◽  
Victoria Serrano ◽  
Charis Cardeno ◽  
Christopher Vollmers ◽  
...  

Chromosomal inversions are widely thought to be favored by natural selection because they suppress recombination between alleles that have higher fitness on the same genetic background or in similar environments. Nonetheless, few selected alleles have been characterized at the molecular level. Gene expression profiling provides a powerful way to identify functionally important variation associated with inversions and suggests candidate phenotypes. However, altered genome structure itself might also impact gene expression by influencing expression profiles of the genes proximal to inversion breakpoint regions or by modifying expression patterns genome-wide due to rearranging large regulatory domains. In natural inversions, genetic differentiation and genome structure are inextricably linked. Here, we characterize differential expression patterns associated with two chromosomal inversions found in natural Drosophila melanogaster populations. To isolate the impacts of genome structure, we engineered synthetic chromosomal inversions on controlled genetic backgrounds with breakpoints that closely match each natural inversion. We find that synthetic inversions have negligible effects on gene expression. Nonetheless, natural inversions have broad-reaching regulatory impacts in cis and trans. Furthermore, we find that differentially expressed genes associated with both natural inversions are enriched for loci associated with immune response to bacterial pathogens. Our results support the idea that inversions in D. melanogaster experience natural selection to maintain associations between functionally related alleles to produce complex phenotypic outcomes.


2019 ◽  
Vol 34 (2) ◽  
pp. 167-177 ◽  
Author(s):  
David Resuehr ◽  
Gang Wu ◽  
Russell L. Johnson ◽  
Martin E. Young ◽  
John B. Hogenesch ◽  
...  

Circadian misalignment between sleep and behavioral/feeding rhythms is thought to lead to various health impairments in shift workers. Therefore, we investigated how shift work leads to genome-wide circadian dysregulation in hospital nurses. Female nurses from the University of Alabama at Birmingham (UAB) Hospital working night shift ( n = 9; 29.6 ± 11.4 y) and day shift ( n = 8; 34.9 ± 9.4 y) participated in a 9-day study measuring locomotor activity and core body temperature (CBT) continuously. Additionally, cortisol and melatonin were assayed and peripheral blood mononuclear cells (PBMCs) were harvested for RNA extraction every 3 h on a day off from work. We saw phase desynchrony of core body temperature, peak cortisol, and dim light melatonin onset in individual night-shift subjects compared with day-shift subjects. This variability was evident even though day- and night-shift nurses had similar sleep timing and scheduled meal times on days off. Surprisingly, the phase and rhythmicity of the expression of the clock gene, PER1, in PBMCs were similar for day-shift and night-shift subjects. Genome-wide microarray analysis of PBMCs from a subset of nurses revealed distinct gene expression patterns between night-shift and day-shift subjects. Enrichment analysis showed that day-shift subjects expressed pathways involved in generic transcription and regulation of signal transduction, whereas night-shift subjects expressed pathways such as RNA polymerase I promoter opening, the matrisome, and endocytosis. In addition, there was large variability in the number of rhythmic transcripts among subjects, regardless of shift type. Interestingly, the amplitude of the CBT rhythm appeared to be more consistent with the number of cycling transcripts for each of the 6 subjects than was melatonin rhythm. In summary, we show that shift-work patterns affect circadian alignment and gene expression in PBMCs.


2020 ◽  
Vol 21 (24) ◽  
pp. 9719
Author(s):  
Marco Spreafico ◽  
Eleonora Mangano ◽  
Mara Mazzola ◽  
Clarissa Consolandi ◽  
Roberta Bordoni ◽  
...  

Transcriptional changes normally occur during development but also underlie differences between healthy and pathological conditions. Transcription factors or chromatin modifiers are involved in orchestrating gene activity, such as the cohesin genes and their regulator NIPBL. In our previous studies, using a zebrafish model for nipblb knockdown, we described the effect of nipblb loss-of-function in specific contexts, such as central nervous system development and hematopoiesis. However, the genome-wide transcriptional impact of nipblb loss-of-function in zebrafish embryos at diverse developmental stages remains under investigation. By RNA-seq analyses in zebrafish embryos at 24 h post-fertilization, we examined genome-wide effects of nipblb knockdown on transcriptional programs. Differential gene expression analysis revealed that nipblb loss-of-function has an impact on gene expression at 24 h post fertilization, mainly resulting in gene inactivation. A similar transcriptional effect has also been reported in other organisms, supporting the use of zebrafish as a model to understand the role of Nipbl in gene regulation during early vertebrate development. Moreover, we unraveled a connection between nipblb-dependent differential expression and gene expression patterns of hematological cell populations and AML subtypes, enforcing our previous evidence on the involvement of NIPBL-related transcriptional dysregulation in hematological malignancies.


2013 ◽  
Vol 368 (1632) ◽  
pp. 20130022 ◽  
Author(s):  
Noboru Jo Sakabe ◽  
Marcelo A. Nobrega

The complex expression patterns observed for many genes are often regulated by distal transcription enhancers. Changes in the nucleotide sequences of enhancers may therefore lead to changes in gene expression, representing a central mechanism by which organisms evolve. With the development of the experimental technique of chromatin immunoprecipitation (ChIP), in which discrete regions of the genome bound by specific proteins can be identified, it is now possible to identify transcription factor binding events (putative cis -regulatory elements) in entire genomes. Comparing protein–DNA binding maps allows us, for the first time, to attempt to identify regulatory differences and infer global patterns of change in gene expression across species. Here, we review studies that used genome-wide ChIP to study the evolution of enhancers. The trend is one of high divergence of cis -regulatory elements between species, possibly compensated by extensive creation and loss of regulatory elements and rewiring of their target genes. We speculate on the meaning of the differences observed and discuss that although ChIP experiments identify the biochemical event of protein–DNA interaction, it cannot determine whether the event results in a biological function, and therefore more studies are required to establish the effect of divergence of binding events on species-specific gene expression.


2001 ◽  
Vol 183 (24) ◽  
pp. 7329-7340 ◽  
Author(s):  
Robert Caldwell ◽  
Ron Sapolsky ◽  
Walter Weyler ◽  
Randal R. Maile ◽  
Stuart C. Causey ◽  
...  

ABSTRACT The availability of the complete sequence of the Bacillus subtilis chromosome (F. Kunst et al., Nature 390:249–256, 1997) makes possible the construction of genome-wide DNA arrays and the study of this organism on a global scale. Because we have a long-standing interest in the effects of scoC on late-stage developmental phenomena as they relate toaprE expression, we studied the genome-wide effects of ascoC null mutant with the goal of furthering the understanding of the role of scoC in growth and developmental processes. In the present work we compared the expression patterns of isogenic B. subtilis strains, one of which carries a null mutation in the scoC locus (scoC4). The results obtained indicate thatscoC regulates, either directly or indirectly, the expression of at least 560 genes in the B. subtilisgenome. ScoC appeared to repress as well as activate gene expression. Changes in expression were observed in genes encoding transport and binding proteins, those involved in amino acid, carbohydrate, and nucleotide and/or nucleoside metabolism, and those associated with motility, sporulation, and adaptation to atypical conditions. Changes in gene expression were also observed for transcriptional regulators, along with sigma factors, regulatory phosphatases and kinases, and members of sensor regulator systems. In this report, we discuss some of the phenotypes associated with the scoCmutant in light of the transcriptome changes observed.


2003 ◽  
Vol 84 (3) ◽  
pp. 353-361 ◽  
Author(s):  
Peter Hauser ◽  
Christoph Schwarz ◽  
Christa Mitterbauer ◽  
Heinz M Regele ◽  
Ferdinand Mühlbacher ◽  
...  

2020 ◽  
Author(s):  
Kathleen Greenham ◽  
Ryan C. Sartor ◽  
Stevan Zorich ◽  
Ping Lou ◽  
Todd C. Mockler ◽  
...  

AbstractAn important challenge of crop improvement strategies is assigning function to paralogs in polyploid crops. Gene expression is one method for determining the activity of paralogs; however, the majority of transcript abundance data represents a static point that does not consider the spatial and temporal dynamics of the transcriptome. Studies in Arabidopsis have estimated up to 90% of the transcriptome to be under diel or circadian control depending on the condition. As a result, time of day effects on the transcriptome have major implications on how we characterize gene activity. In this study, we aimed to resolve the circadian transcriptome in the polyploid crop Brassica rapa and explore the fate of multicopy orthologs of Arabidopsis circadian regulated genes. We performed a high-resolution time course study with 2 h sampling density to capture the genes under circadian control. Strikingly, more than two-thirds of expressed genes exhibited rhythmicity indicative of circadian regulation. To compare the expression patterns of paralogous genes, we developed a program in R called DiPALM (Differential Pattern Analysis by Linear Models) that analyzes time course data to identify transcripts with significant pattern differences. Using DiPALM, we identified genome-wide divergence of expression patterns among retained paralogs. Cross-comparison with a previously generated diel drought experiment in B. rapa revealed evidence for differential drought response for these diverging paralog pairs. Using gene regulatory network models we compared transcription factor targets between B. rapa and Arabidopsis circadian networks to reveal additional evidence for divergence in expression between B. rapa paralogs that may be driven in part by variation in conserved non coding sequences. These findings provide new insight into the rapid expansion and divergence of the transcriptional network in a polyploid crop and offer a new method for assessing paralog activity at the transcript level.SignificanceThe circadian regulation of the transcriptome leads to time of day changes in gene expression that coordinates environmental conditions with physiological responses. Brassica rapa, a morphologically diverse crop species, has undergone whole genome triplication since diverging from Arabidopsis resulting in an expansion of gene copy number. To examine how this expansion has influenced the circadian transcriptome we developed a new method for comparing gene expression patterns. This method facilitated the discovery of genome-wide expansion of expression patterns for genes present in multiple copies and divergence in temporal abiotic stress response. We find support for conserved sequences outside the gene body contributing to these expression pattern differences and ultimately generating new connections in the gene regulatory network.


2021 ◽  
Author(s):  
Jakub Jankowski ◽  
Hye Kyung Lee ◽  
Julia Wilflingseder ◽  
Lothar Hennighausen

SummaryRecently, a short, interferon-inducible isoform of Angiotensin-Converting Enzyme 2 (ACE2), dACE2 was identified. ACE2 is a SARS-Cov-2 receptor and changes in its renal expression have been linked to several human nephropathies. These changes were never analyzed in context of dACE2, as its expression was not investigated in the kidney. We used Human Primary Proximal Tubule (HPPT) cells to show genome-wide gene expression patterns after cytokine stimulation, with emphasis on the ACE2/dACE2 locus. Putative regulatory elements controlling dACE2 expression were identified using ChIP-seq and RNA-seq. qRT-PCR differentiating between ACE2 and dACE2 revealed 300- and 600-fold upregulation of dACE2 by IFNα and IFNβ, respectively, while full length ACE2 expression was almost unchanged. JAK inhibitor ruxolitinib ablated STAT1 and dACE2 expression after interferon treatment. Finally, with RNA-seq, we identified a set of genes, largely immune-related, induced by cytokine treatment. These gene expression profiles provide new insights into cytokine response of proximal tubule cells.


2017 ◽  
Author(s):  
Anne Lorant ◽  
Sarah Pedersen ◽  
Irene Holst ◽  
Matthew B. Hufford ◽  
Klaus Winter ◽  
...  

ABSTRACTDomestication research has largely focused on identification of morphological and genetic differences between extant populations of crops and their wild relatives. Little attention has been paid to the potential effects of environment despite substantial known changes in climate from the time of domestication to modern day. Recent research, in which maize and teosinte (i.e., wild maize) were exposed to environments similar to the time of domestication, resulted in a plastic induction of domesticated phenotypes in teosinte and little response to environment in maize. These results suggest that early agriculturalists may have selected for genetic mechanisms that cemented domestication phenotypes initially induced by a plastic response of teosinte to environment, a process known as genetic assimilation. To better understand this phenomenon and the potential role of environment in maize domestication, we examined differential gene expression in maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis) between past and present conditions. We identified a gene set of over 2000 loci showing a change in expression across environmental conditions in teosinte and invariance in maize. In fact, overall we observed both greater plasticity in gene expression and more substantial re-wiring of expression networks in teosinte across environments when compared to maize. While these results suggest genetic assimilation played at least some role in domestication, genes showing expression patterns consistent with assimilation are not significantly enriched for previously identified domestication candidates, indicating assimilation did not have a genome-wide effect.


Sign in / Sign up

Export Citation Format

Share Document