scholarly journals Intrarenal expression and distribution of cyclooxygenase isoforms in rats with experimental heart failure

2001 ◽  
Vol 280 (1) ◽  
pp. F43-F53 ◽  
Author(s):  
Zaid Abassi ◽  
Sergey Brodsky ◽  
Olga Gealekman ◽  
Irith Rubinstein ◽  
Aaron Hoffman ◽  
...  

The generation of PGs from arachidonic acid is mediated by cyclooxygenase (COX), which consists of a constitutive (COX-1) and an inducible (COX-2) isoform. The present study evaluated the relative expression and immunoreactive levels of COX-1 and COX-2, by means of RT-PCR, Western blot analysis, and immunohistochemistry, in the renal cortex and medulla of rats with congestive heart failure (CHF), induced by the placement of an aortocaval fistula. In addition, we examined the effects of a COX-1 inhibitor (piroxicam), COX-2 inhibitor (nimesulide), and nonselective COX inhibitor (indomethacin) at a dose of 5 mg/kg, on intrarenal blood flow by laser Doppler flowmetry. COX-1 and COX-2 mRNAs were abundantly expressed in the renal medulla of control and CHF rats and only minimally in the cortex. Moreover, both RT-PCR (32–36 cycles) and Western blot techniques revealed upregulation of medullary COX-2, but not of COX-1, in rats with advanced heart failure. In line with these findings, all three tested COX inhibitors provoked significant and sustained decreases (Δ ≈ −20%) in medullary blood flow (MBF), which were similar in magnitude and duration in control animals. However, in CHF rats, indomethacin produced a greater reduction in MBF than that obtained with either piroxicam or nimesulide. Taken together, these results indicate that 1) both COX-1 and COX-2 are predominantly expressed in the renal medulla and 2) experimental CHF is associated with selective overexpression of COX-2. The latter may represent a mechanism aimed at defending MBF in the face of a decrease in renal perfusion pressure during the development of CHF.

2016 ◽  
Vol 37 (3) ◽  
pp. 1060-1068 ◽  
Author(s):  
Helaine Gariepy ◽  
Jun Zhao ◽  
Dan Levy

Cortical spreading depression (CSD) is considered a significant phenomenon for human neurological conditions and one of its key signatures is the development of persistent cortical oligemia. The factors underlying this reduction in cerebral blood flow (CBF) remain incompletely understood but may involve locally elaborated vasoconstricting eicosanoids. We employed laser Doppler flowmetry in urethane-anesthetized rats, together with a local pharmacological blockade approach, to test the relative contribution of cyclooxygenase (COX)-derived prostanoids to the oligemic response following CSD. Administration of the non-selective COX inhibitor naproxen completely inhibited the oligemic response. Selective inhibition of COX-1 with SC-560 preferentially reduced the early reduction in CBF while selective COX-2 inhibition with NS-398 affected only the later response. Blocking the action of thromboxane A2 (TXA2), using the selective thromboxane synthase inhibitor ozagrel, reduced only the initial CBF decrease, while inhibition of prostaglandin F2alpha action, using the selective FP receptor antagonist AL-8810, blocked the later phase of the oligemia. Our results suggest that the long-lasting oligemia following CSD consists of at least two distinct temporal phases, mediated by preferential actions of COX-1- and COX-2-derived prostanoids: an initial phase mediated by COX-1 that involves TXA2 followed by a later phase, mediated by COX-2 and PGF2alpha.


2017 ◽  
Vol 313 (5) ◽  
pp. F1068-F1076 ◽  
Author(s):  
Ashfaq Ahmad ◽  
Zdravka Daneva ◽  
Guangbi Li ◽  
Sara K. Dempsey ◽  
Ningjun Li ◽  
...  

The renal medulla, considered critical for the regulation of salt and water balance and long-term blood pressure control, is enriched in anandamide and two of its major metabolizing enzymes, cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH). Infusion of anandamide (15, 30, and 60 nmol·min−1·kg−1) into the renal medulla of C57BL/6J mice stimulated diuresis and salt excretion in a COX-2- but not COX-1-dependent manner. To determine whether endogenous endocannabinoids in the renal medulla can elicit similar effects, the effects of intramedullary isopropyl dodecyl fluorophosphate (IDFP), which inhibits the two major endocannabinoid hydrolases, were studied. IDFP treatment increased the urine formation rate and sodium excretion in a COX-2- but not COX-1-dependent manner. Neither anandamide nor IDFP affected the glomerular filtration rate. Neither systemic (0.625 mg·kg−1·30 min−1 iv) nor intramedullary (15 nmol·min−1·kg−1·30 min−1) IDFP pretreatment before intramedullary anandamide (15–30 nmol·min−1·kg−1) strictly blocked effects of anandamide, suggesting that hydrolysis of anandamide was not necessary for its diuretic effect. Intramedullary IDFP had no effect on renal blood flow but stimulated renal medullary blood flow. The effects of IDFP on urine flow rate and medullary blood flow were FAAH-dependent as demonstrated using FAAH knockout mice. Analysis of mouse urinary PGE2 concentrations by HPLC-electrospray ionization tandem mass spectrometry showed that IDFP treatment decreased urinary PGE2. These data are consistent with a role of FAAH and endogenous anandamide acting through a COX-2-dependent metabolite to regulate diuresis and salt excretion in the mouse kidney.


2002 ◽  
Vol 227 (7) ◽  
pp. 465-473 ◽  
Author(s):  
Rumiana Bakalova ◽  
Tetsuia Matsuura ◽  
Iwao Kanno

The present study was designed to investigate whether administration of indomethacin (IMC), a non-selective cyclooxygenase (COX-1 and COX-2) inhibitor, and Rofecoxib, a highly selective COX-2 inhibitor, affect the regulation of regional cerebral blood flow response evoked by somatosensory activation (evoked rCBF). IMC and Rofecoxib were applied intravenously (6.25 and 3 mg/kg/hr, respectively). Somatosensory activation was induced by electrical hind paw stimuli of 0.2, 1, and 5 Hz (5-sec duration, 1.5 mA). The evoked rCBF was measured in α-chloralose anesthetized rats using laser-Doppler flowmetry. Before and after drug application, the evoked rCBF showed a frequency-dependent increase in the range of 0.2–5 Hz stimulation. IMC reduced significantly (about 50%–60%) evoked rCBF in response to all frequencies of hind paw stimulation (P< 0.05). Rofecoxib reduced significantly (about 50%) evoked rCBF in response to 1 and 5 Hz stimulation (P < 0.05), but did not affect evoked rCBF at 0.2 Hz. After IMC or Rofecoxib application, the normalized evoked rCBF curves peaked earlier as compared with that before their application (P < 0.05), although the rise time of 0.5 sec was nearly constant regardless of the stimulus frequency. The termination time of evoked rCBF curves was changed significantly after IMC application at 0.2 Hz stimulation (P < 0.05), but was not affected after Rofecoxib application. Neither COX inhibitor significantly affected the baseline level of CBF. The results suggest a participation of COX products in the regulation of evoked rCBF in response to somatosensory stimulation in the brain.


1999 ◽  
Vol 276 (3) ◽  
pp. R790-R798 ◽  
Author(s):  
Ai-Ping Zou ◽  
Kasem Nithipatikom ◽  
Pin-Lan Li ◽  
Allen W. Cowley

This study determined the levels of adenosine in the renal medullary interstitium using microdialysis and fluorescence HPLC techniques and examined the role of endogenous adenosine in the control of medullary blood flow and sodium excretion by infusing the specific adenosine receptor antagonists or agonists into the renal medulla of anesthetized Sprague-Dawley rats. Renal cortical and medullary blood flows were measured using laser-Doppler flowmetry. Analysis of microdialyzed samples showed that the adenosine concentration in the renal medullary interstitial dialysate averaged 212 ± 5.2 nM, which was significantly higher than 55.6 ± 5.3 nM in the renal cortex ( n = 9). Renal medullary interstitial infusion of a selective A1antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 300 pmol ⋅ kg−1 ⋅ min−1, n = 8), did not alter renal blood flows, but increased urine flow by 37% and sodium excretion by 42%. In contrast, renal medullary infusion of the selective A2 receptor blocker 3,7-dimethyl-1-propargylxanthine (DMPX; 150 pmol ⋅ kg−1 ⋅ min−1, n = 9) decreased outer medullary blood flow (OMBF) by 28%, inner medullary blood flows (IMBF) by 21%, and sodium excretion by 35%. Renal medullary interstitial infusion of adenosine produced a dose-dependent increase in OMBF, IMBF, urine flow, and sodium excretion at doses from 3 to 300 pmol ⋅ kg−1 ⋅ min−1( n = 7). These effects of adenosine were markedly attenuated by the pretreatment of DMPX, but unaltered by DPCPX. Infusion of a selective A3receptor agonist, N 6-benzyl-5′-( N-ethylcarbonxamido)adenosine (300 pmol ⋅ kg−1 ⋅ min−1, n = 6) into the renal medulla had no effect on medullary blood flows or renal function. Glomerular filtration rate and arterial pressure were not changed by medullary infusion of any drugs. Our results indicate that endogenous medullary adenosine at physiological concentrations serves to dilate medullary vessels via A2 receptors, resulting in a natriuretic response that overrides the tubular A1 receptor-mediated antinatriuretic effects.


1999 ◽  
Vol 276 (3) ◽  
pp. R913-R921 ◽  
Author(s):  
Ronald I. Clyman ◽  
Pierre Hardy ◽  
Nahid Waleh ◽  
Yao Qi Chen ◽  
Françoise Mauray ◽  
...  

Nonselective cyclooxygenase (COX) inhibitors are potent tocolytic agents but have adverse effects on the fetal ductus arteriosus. We hypothesized that COX-2 inhibitors may not affect the ductus if the predominant COX isoform is COX-1. To examine this hypothesis, we used ductus arteriosus obtained from late-gestation fetal lambs. In contrast to our hypothesis, fetal lamb ductus arteriosus expressed both COX-1- and COX-2-immunoreactive protein (by Western analysis). Although COX-1 was found in both endothelial and smooth muscle cells, COX-2 was found only in the endothelial cells lining the ductus lumen (by immunohistochemistry). The relative contribution of COX-1 and COX-2 to PGE2 synthesis was consistent with the immunohistochemical results: in the intact ductus, PGE2 formation was catalyzed by both COX-1 and COX-2 in equivalent proportions; in the endothelium-denuded ductus, COX-2 no longer played a significant role in PGE2 synthesis. NS-398, a selective inhibitor of COX-2, was 66% as effective as the selective COX-1 inhibitor valeryl salicylate and the nonselective COX inhibitor indomethacin in causing contraction of the ductus in vitro. At this time, caution should be used when recommending COX-2 inhibitors for use in pregnant women.


1991 ◽  
Vol 261 (6) ◽  
pp. F998-F1006 ◽  
Author(s):  
M. S. Nobes ◽  
P. J. Harris ◽  
H. Yamada ◽  
F. A. Mendelsohn

The effects of angiotensin II (ANG II) or angiotensin III (ANG III) on renal cortical blood flow (CBF) or papillary blood flow (PBF) were investigated in Inactin-anesthetized young rats with the use of laser-Doppler flowmetry. Infusion of equimolar pressor doses of ANG II (300 ng.kg-1.min-1 iv) or ANG III (267 ng.kg-1.min-1) decreased CBF by 31 +/- 2.6% (P less than 0.001) and 20.3 +/- 3.2% (P less than 0.01), respectively but increased PBF by 19 +/- 6.1% (P less than 0.05) and 14.6 +/- 4.4% (P less than 0.05). The ANG II-induced increase in PBF was not prevented by aortic clamping to maintain constant renal perfusion pressure or pretreatment with the prostaglandin synthase inhibitor, indomethacin. The nonpeptide ANG II receptor antagonist, DuP 753 completely abolished the systemic and intrarenal effects of ANG II. After pretreatment with a kallikrein inhibitor, aprotinin, ANG II infusion increased mean arterial pressure but did not affect PBF, suggesting that kinins, but not prostaglandins, modulate the action of systemic ANG II on PBF. We conclude that circulating ANG II induces vasoconstriction in the cortex and also promotes the intrarenal production of kinins, which act to enhance papillary blood flow.


1993 ◽  
Vol 265 (5) ◽  
pp. R963-R973 ◽  
Author(s):  
R. J. Roman ◽  
A. P. Zou

Although the role of the renal medullary circulation in the control of urinary concentrating ability is well established, its potential influence on tubular sodium reabsorption is not generally recognized. Nearly 30 years ago, changes in the intrarenal distribution of blood flow were first proposed to contribute to the natriuretic response to volume expansion. However, the lack of reliable methods for studying medullary blood flow limited progress in this area. The recent development of laser-Doppler flowmetry and videomicroscopic techniques for the study of the vasa recta circulation has renewed interest in the role of medullary hemodynamics in the control of sodium reabsorption. Results of these studies indicate that changes in renal medullary hemodynamics alter renal interstitial pressure and the medullary solute gradient and play an important role in the natriuretic response to elevations in renal perfusion pressure, intravenous infusion of saline, and changes in tubular sodium reabsorption produced by vasoactive compounds. What is emerging from these studies is the view that changes in renal medullary hemodynamics represent an important but misunderstood and long-ignored factor in the control of tubular sodium reabsorption.


1996 ◽  
Vol 270 (5) ◽  
pp. F833-F838 ◽  
Author(s):  
D. S. Majid ◽  
L. G. Navar

Although it is well recognized that whole kidney and cortical blood flow exhibit efficient autoregulation in response to alterations in renal arterial pressure (RAP), the autoregulatory behavior of medullary blood flow (MBF) has remained uncertain. We have evaluated MBF responses to stepwise reductions in RAP for both short-term (2 min, n = 6) and longer periods (15 min, n = 7) using single-fiber laser-Doppler flowmetry with needle probes inserted into the mid-medullary region in denervated kidneys of 13 anesthetized dogs. The changes in cortical blood flow (CBF) were assessed with either a surface probe or a needle probe inserted into the cortex. Control total renal blood flow (RBF), assessed by electromagnetic flow probe in these dogs, was 5.2 +/- 0.3 ml.min-1.g-1, and glomerular filtration rate was 0.97 +/- 0.05 ml.min-1.g-1 (n = 7). RBF, MBF, and CBF all exhibited efficient autoregulatory behavior during changes in RAP from 150 to 75 mmHg. The slopes of RAP vs. RBF, CBF, as well as MBF, were not significantly different from zero within this range of RAP. Below RAP of 75 mmHg, all indexes of blood flow showed linear decreases with reductions in pressure. The data indicate that blood flow in the renal medulla of dogs exhibits efficient autoregulatory behavior, similar to that in the cortex.


2020 ◽  
Vol 21 (3) ◽  
pp. 1083 ◽  
Author(s):  
Karina Chibowska ◽  
Jan Korbecki ◽  
Izabela Gutowska ◽  
Emilia Metryka ◽  
Maciej Tarnowski ◽  
...  

Lead (Pb) is a heavy metal with a proven neurotoxic effect. Exposure is particularly dangerous to the developing brain in the pre- and neonatal periods. One postulated mechanism of its neurotoxicity is induction of inflammation. This study analyzed the effect of exposure of rat pups to Pb during periods of brain development on the concentrations of selected cytokines and prostanoids in the forebrain cortex, hippocampus and cerebellum. Methods: Administration of 0.1% lead acetate (PbAc) in drinking water ad libitum, from the first day of gestation to postnatal day 21, resulted in blood Pb in rat pups reaching levels below the threshold considered safe for humans by the Centers for Disease Control and Prevention (10 µg/dL). Enzyme-linked immunosorbent assay (ELISA) method was used to determine the levels of interleukins IL-1β, IL-6, transforming growth factor-β (TGF-β), prostaglandin E2 (PGE2) and thromboxane B2 (TXB2). Western blot and quantitative real-time PCR were used to determine the expression levels of cyclooxygenases COX-1 and COX-2. Finally, Western blot was used to determine the level of nuclear factor kappa B (NF-κB). Results: In all studied brain structures (forebrain cortex, hippocampus and cerebellum), the administration of Pb caused a significant increase in all studied cytokines and prostanoids (IL-1β, IL-6, TGF-β, PGE2 and TXB2). The protein and mRNA expression of COX-1 and COX-2 increased in all studied brain structures, as did NF-κB expression. Conclusions: Chronic pre- and neonatal exposure to Pb induces neuroinflammation in the forebrain cortex, hippocampus and cerebellum of rat pups.


2002 ◽  
Vol 283 (5) ◽  
pp. R1104-R1117 ◽  
Author(s):  
Andrei I. Ivanov ◽  
Ralph S. Pero ◽  
Adrienne C. Scheck ◽  
Andrej A. Romanovsky

The febrile response to lipopolysaccharide (LPS) consists of three phases ( phases I–III), all requiring de novo synthesis of prostaglandin (PG) E2. The major mechanism for activation of PGE2-synthesizing enzymes is transcriptional upregulation. The triphasic febrile response of Wistar-Kyoto rats to intravenous LPS (50 μg/kg) was studied. Using real-time RT-PCR, the expression of seven PGE2-synthesizing enzymes in the LPS-processing organs (liver and lungs) and the brain “febrigenic center” (hypothalamus) was quantified. Phase I involved transcriptional upregulation of the functionally coupled cyclooxygenase (COX)-2 and microsomal (m) PGE synthase (PGES) in the liver and lungs. Phase II entailed robust upregulation of all enzymes of the major inflammatory pathway, i.e., secretory (s) phospholipase (PL) A2-IIA → COX-2 → mPGES, in both the periphery and brain. Phase III was accompanied by the induction of cytosolic (c) PLA2-α in the hypothalamus, further upregulation of sPLA2-IIA and mPGES in the hypothalamus and liver, and a decrease in the expression of COX-1 and COX-2 in all tissues studied. Neither sPLA2-V nor cPGES was induced by LPS. The high magnitude of upregulation of mPGES and sPLA2-IIA (1,257-fold and 133-fold, respectively) makes these enzymes attractive targets for anti-inflammatory therapy.


Sign in / Sign up

Export Citation Format

Share Document