Surface characteristics of vertebrate lung extracts

1961 ◽  
Vol 16 (6) ◽  
pp. 1075-1077 ◽  
Author(s):  
Dean A. Miller ◽  
Stuart Bondurant

It has been suggested that alveolar stability is due, in part, to the presence of a noncellular alveolar lining which changes surface tension with changing surface area. Extracts of mammalian lungs manifest a decrease in surface tension with decrease in surface area. To compare surface characteristics with respiratory mechanics and anatomy, lung extracts were prepared from amphibians, reptiles, birds, and mammals. Lung extracts from mammalian lungs with true alveolar structure show typical surface tension-surface area characteristics, whereas other vertebrate lung extracts behave similarly to most other biological fluids. An alveolar lining layer with surface behavior similar to mammalian lung extracts would be expected to contribute to alveolar stability. Submitted on June 28, 1961

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2141-2143 ◽  
Author(s):  
Y. Wang ◽  
P. R. Anderson

Two types of seed with different surface area are used in a precipitation system to evaluate the effectiveness of seed surface characteristics on sludge dewatering properties. We expect that the surface area of the seed will stongly affect the sludge properties. The preliminary study shows that the seeded system has a lower precipitation pH and lower supersaturation level.


2007 ◽  
Vol 544-545 ◽  
pp. 131-134
Author(s):  
Sardor Abdukakharovich Mavlyankariev ◽  
Dong Seok Rhee

Modified polypropylene granules (MDPG) were coated by manganese dioxide and their surface and adsorptive characteristics were studied. Surface characteristics of the adsorbent were investigated by B.E.T. surface area and mercury porosimetry. Coating has significantly increased the surface area of granules from 0.12 m 2 /g B.E.T. N 2 to 15.42 m 2 /g. Gas pycnometry measurements resulted in low density of 0.13 g/cm 3 for uncoated granules, the fact ascribed to 0.65 porosity measured. Coating increased micro pore volume of raw granules by a factor of 58. Adsorption experiments were conducted in column flow-through reactors at pH 6.0 and 10 g/L sorbent dosage for mixture of four metal species, each having 5 mg/L initial concentration. More than 60 % of Pb and Cu was removed within first 20 min, whereas just over 29 and 13 % for Cd and Zn respectively. Furthermore, more than 99, 84, 40, 16 % of Pb, Cu, Cd, and Zn was removed within 1 h. Adsorption efficiencies for 5 ppm of initial metal concentration at pH 5.0 and 10 g/L sorbent/solute ratio resulted in 4.9, 3.9 mg of Pb and Cu sorbed per gram of sorbent. And these ratios for separate metal ions were substantially higher than those for the mixture of the four metal ions. For 5 g/L of sorbent under the same parameters, removal efficiencies of Cd and Zn were respectively 0.98, 0.75 mg/g, correlating well with Freundlich adsorption model. Adsorption kinetics showed relatively fast removal rates within first 5 h of sorption. Desorption resulted in eluting 57, 70, 76, 78 % of the initial feeding concentrations for Pb, Cu, Cd, Zn, respectively.


2013 ◽  
Author(s):  
George J. Nelson

Analytical models developed to investigate charge transfer in Li-ion battery cathodes reveal distinct transport regimes where performance may be limited by either microstructural surface characteristics or solid phase geometry. For several cathode materials, particularly those employing conductive additives, surface characteristics are expected to drive these performance limitations. For such electrodes gains in performance may be achieved by modifying surface geometry to increase surface area. However, added surface area may present a diminishing return if complex structures restrict access to electrochemically active interfaces. A series of parametric studies has been performed to better ascertain the merits of complex, tailored surfaces in Li-ion battery cathodes. The interaction between lithium transport and surface geometry is explored using a finite element model in which complex surfaces are simulated with fractal structures. Analysis of transport in these controlled structures permits assessment of scaling behavior related to surface complexity and provides insight into trade-offs in tailoring particle surface geometry.


Author(s):  
Auro Ashish Saha ◽  
Sushanta K. Mitra

A three-dimensional numerical simulation of flow in patterned microchannel with alternate layers of hydrophilic and hydrophobic surfaces at the bottom wall is studied here. Surface characteristics of the microchannel are accounted by specifying the contact angle and the surface tension of the fluid. Meniscus profiles with varying amplitude and shapes are obtained under the different specified surface conditions. Flow instability increases as the fluid at the bottom wall traverses alternately from hydrophilic region to hydrophobic region. To understand the surface tension effect of the side walls, a two-dimensional numerical study has also been carried out for the microchannel and the results are compared with three-dimensional simulation. The surface tension effect of the side walls enhances the capillary effect for three-dimensional case.


Author(s):  
S. Manocha ◽  
Parth Joshi ◽  
Amit Brahmbhatt ◽  
Amiya Banerjee ◽  
Snehasis Sahoo ◽  
...  

In the present work, a one step carbon activation process was developed by stabilized poly-blend. It is carbonized in nitrogen atmosphere and activated in steam in one step for known interval of times to enhance the surface area and develop interconnected porosity. The weight-loss behavior during steam activation of stabilized poly-blend at different temperatures, surface area and pore size distribution were studied to identify the optimum synthesis parameters. The results of surface characteristics were compared with those of activated carbon prepared by carbonization and activation in two steps. It was found that activation temperature has profound effect on surface characteristics. As activation temperature was raised from 800 °C to 1150 °C, surface area of activated carbon increased about three times. In addition to surface area, average pore diameter also increases with increasing activation temperature. Thus, activated carbon with high percentage of porosity and surface area can be developed by controlling the activation temperature during activation process.


Author(s):  
Rongkai Zhu ◽  
Qun Zheng ◽  
Guoqiang Yue ◽  
Rakesh Bhargava

Concerned with the influence of the size of water droplets on the effect of wet compression, it is important to control the size of water droplets among 5–10 microns or smaller, for this purpose an experimental work is carried out by improve the surface behavior of water aiming to reduce its surface tension. Non-ionic surfactants and its combination were employed to reach such an aim. The surface tension of water was reduced from 72.9mN/m to 41.2mN/m or even lower depending on the cost. It offers a possible way to refine spray, and ready to use in wet compression process.


2004 ◽  
Vol 97 (2) ◽  
pp. 704-715 ◽  
Author(s):  
Laura M. Y. Yu ◽  
James J. Lu ◽  
Yawen W. Chan ◽  
Amy Ng ◽  
Ling Zhang ◽  
...  

Existing methodology for surface tension measurements based on drop shapes suffers from the shortcoming that it is not capable to function at very low surface tension if the liquid dispersion is opaque, such as therapeutic lung surfactants at clinically relevant concentrations. The novel configuration proposed here removes the two big restrictions, i.e., the film leakage problem that is encountered with such methods as the pulsating bubble surfactometer as well as the pendant drop arrangement, and the problem of the opaqueness of the liquid, as in the original captive bubble arrangement. A sharp knife edge is the key design feature in the constrained sessile drop that avoids film leakage at low surface tension. The use of the constrained sessile drop configuration in conjunction with axisymmetric drop shape analysis to measure surface tension allows complete automation of the setup. Dynamic studies with lung surfactant can be performed readily by changing the volume of a sessile drop, and thus the surface area, by means of a motor-driven syringe. To illustrate the validity of using this configuration, experiments were performed using an exogenous lung surfactant preparation, bovine lipid extract surfactant (BLES) at 5.0 mg/ml. A comparison of results obtained for BLES at low concentration between the constrained sessile drop and captive bubble arrangement shows excellent agreement between the two approaches. When the surface area of the BLES film (0.5 mg/ml) was compressed by about the same amount in both systems, the minimum surface tensions attained were identical within the 95% confidence limits.


2020 ◽  
Vol 40 (4) ◽  
pp. 433-444 ◽  
Author(s):  
Jinlong Yang ◽  
Joseph M Michaud ◽  
Steven Jansen ◽  
H Jochen Schenk ◽  
Yi Y Zuo

Abstract The surface tension of xylem sap has been traditionally assumed to be close to that of the pure water because decreasing surface tension is thought to increase vulnerability to air seeding and embolism. However, xylem sap contains insoluble lipid-based surfactants, which also coat vessel and pit membrane surfaces, where gas bubbles can enter xylem under negative pressure in the process known as air seeding. Because of the insolubility of amphiphilic lipids, the surface tension influencing air seeding in pit pores is not the equilibrium surface tension of extracted bulk sap but the local surface tension at gas–liquid interfaces, which depends dynamically on the local concentration of lipids per surface area. To estimate the dynamic surface tension in lipid layers that line surfaces in the xylem apoplast, we studied the time-dependent and surface area-regulated surface tensions of apoplastic lipids extracted from xylem sap of four woody angiosperm plants using constrained drop surfactometry. Xylem lipids were found to demonstrate potent surface activity, with surface tensions reaching an equilibrium at ~25 mN m-1 and varying between a minimum of 19 mN m-1 and a maximum of 68 mN m-1 when changing the surface area between 50 and 160% around the equilibrium surface area. It is concluded that xylem lipid films in natural conditions most likely range from nonequilibrium metastable conditions of a supersaturated compression state to an undersaturated expansion state, depending on the local surface areas of gas–liquid interfaces. Together with findings that maximum pore constrictions in angiosperm pit membranes are much smaller than previously assumed, low dynamic surface tension in xylem turns out to be entirely compatible with the cohesion–tension and air-seeding theories, as well as with the existence of lipid-coated nanobubbles in xylem sap, and with the range of vulnerabilities to embolism observed in plants.


Sign in / Sign up

Export Citation Format

Share Document