Protein metabolism by rat lung: influence of fasting, glucose, and insulin

1977 ◽  
Vol 43 (3) ◽  
pp. 463-467 ◽  
Author(s):  
L. A. Thet ◽  
M. D. Delaney ◽  
C. A. Gregorio ◽  
D. Massaro

We studied protein metabolism by rat lung slices. We found that phenylalanine is not metabolized to other substances by the lung and that the rate of incorporation of L-[U-14C]phenylalanine into protein, calculated using its intracellular specific radioactivity, reached a maximum within 20 min and remained stable for the rest of a 3-h incubation. The rate of protein degradation, determined using [12C]phenylalanine as a marker, was linear over a 3-h incubation. Fasting for 3 days slowed the increase in lung protein content of fasted compared to nonfasted rats; there was also a decrease in protein synthesis and an increase in proteolysis. In fed rats, glucose, insulin, and glucose plus insulin did not alter protein synthesis. Glucose, insulin alone, and glucose plus insulin decreased proteolysis. We conclude that the in vitro system reflected changes in the in vivo protein content of the lung. Fasting decreases protein synthesis and increases proteolysis. Glucose and insulin alone modulate protein metabolism in the lung by acting on the degradative rather than the synthetic process.

1976 ◽  
Vol 54 (3) ◽  
pp. 305-313 ◽  
Author(s):  
R. Mongeau ◽  
J. C. Dagorn ◽  
J. Morisset

The present study has been undertaken to determine in the rat the influence of exocrine secretory stimulation on pancreatic protein synthesis. This stimulant consisted of a single injection of cholecystokinin–pancreozymin (8 Ivy units/kg) plus secretin (5 clinical units/kg). The rate of [14C]phenylalanine incorporation into total proteins was measured 5, 11, 17, 30, 45 and 60 min later. Incorporation was significantly decreased after 5 min, then significantly increased at 17 min, and finally returned to control values at 45 min. This biphasic evolution was shown not to be caused by variations in the precursor pool specific radioactivity. We concluded that secretory stimulation of the pancreas can induce a decrease in the rate of protein biosynthesis. This decrease is nevertheless a transient phenomenon, since the rate of biosynthesis was increased at 17 min. These results, obtained from a totally in vivo system, confirm previous data obtained from an in vivo – in vitro system.


Weed Science ◽  
1980 ◽  
Vol 28 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Luanne M. Deal ◽  
J. T. Reeves ◽  
B. A. Larkins ◽  
F. D. Hess

The effects of chloracetamides on protein synthesis were studied both in vivo and in vitro. Four chloracetamide herbicides, alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], CDAA (N–N-diallyl-2-chloroacetamide), and propachlor (2-chloro-N-isopropylacetanilide) were tested for inhibition of [3H]-leucine incorporation into protein. Incorporation of3H-leucine into trichloroacetic acid (TCA)-insoluble protein was inhibited in oat (Avena sativaL. ‘Victory’) seedlings grown in sand culture and treated 12 h at 1 × 10−4M with these chloracetamides. The herbicides were also tested in a cell-free protein synthesizing system containing polyribosomes purified from oat root cytoplasm. These herbicides had no effect on the rates of polypeptide elongation nor on the synthesis of specific polypeptides when herbicides (1 × 10−4M) were added directly to the system. Polypeptide formation was inhibited 89% when 1 × 10−4M cycloheximide was added during translation. Cytoplasmic polyribosomes were isolated from oat roots treated 12 h with 1 × 10−4M herbicide. Translation rates and products were not altered when these polyribosomes were added to the in vitro system. Protein synthesis is inhibited when tested in an in vivo system; however, the inhibition does not occur during the translation of mRNA into protein.


1983 ◽  
Vol 210 (2) ◽  
pp. 323-330 ◽  
Author(s):  
W S Stirewalt ◽  
R B Low

Rates of protein synthesis and degradation were measured in the isolated rat epitrochlearis muscle by radiotracer techniques, by using the specific radioactivity of tRNA-bound amino acid as precursor for protein synthesis. The tissue maintained linear rates of protein synthesis for 3 h of incubation in the presence of amino acids and glucose and in the absence of insulin. Under these conditions, however, the muscles were in negative nitrogen balance, with rates of protein degradation exceeding rates of protein synthesis. Under steady-state conditions of labelling, the specific radioactivities of tRNA-bound leucine, phenylalanine and valine were significantly less than their respective values in the incubation medium, at concentrations in the medium varying from 1 to 10 times those in normal rat serum. Insulin caused a dose- and time-dependent increase in tRNA-based protein synthesis rates, more than doubling rates at 5 and 50 ng of insulin/ml. At the lower, physiological, concentration of insulin, the stimulation of protein synthesis was not observed until the third hour of incubation with the hormone, whereas the rate of protein synthesis at the higher concentration was elevated during the second hour. There were no delays in the stimulation by insulin of glucose conversion into glycogen. The delayed stimulatory effects of insulin on the rate of protein synthesis brought the tissue to a nitrogen balance near zero. The presence of the hormone also prevented the increase in the rate of protein degradation seen in the third hour of incubation in the absence of the hormone. These studies demonstrate the viability of the incubated rat epitrochlearis muscle with respect to protein metabolism and sensitivity to the protein anabolic effects of physiological concentrations of insulin, and indicate that the preparation is a suitable experimental model for the study of the control of protein metabolism in fast-twitch skeletal muscle.


1966 ◽  
Vol 123 (1) ◽  
pp. 55-74 ◽  
Author(s):  
Leslie H. Sobin ◽  
John G. Kidd

Lymphoma 6C3HED-OG cells, known from previous work to be susceptible to the effects of guinea pig serum in vivo and dependent upon extrinsic asparagine for protein synthesis and growth in vitro, remained for the most part morphologically intact and countable in the electronic cell counter following exposures of 1 and 2 hr to the effects of heated (56°C, 30 min) guinea pig serum injected into the peritoneal cavities of mice in which the lymphoma cells were growing rapidly; after exposures of 4 and 6 hr the bulk of the -OG cells remained still intact and countable in the cell counter, though by this time a small proportion of them (5 to 12%) proved stainable with eosin in wet preparations) hence were presumably nonviable. After 12, 16, and 24 hr of exposure, however, the bulk of the -OG cells were either lysed or fragmented, to the extent that they did not register in the cell counter. Morphologic studies of the cells exposed 16 and 24 hr to the effects of heated guinea pig serum in vivo, disclosed that most of the cells then remaining were either frankly necrotic or greatly altered otherwise, marked vacuolation of the cytoplasm being the most conspicuous alteration in cells not yet obviously necrotic. Long before the bulk of the Lymphoma 6C3HED-OG cells had become conspicuously changed morphologically following exposure to the effects of heated guinea pig serum in vivo, they manifested striking alterations in protein metabolism, as was disclosed by "pulse" studies with radioactive valine. For example, the protein metabolism of -OG cells, as measured by their incorporation of L-valine-C14, was sharply curtailed following 15 min of exposure to heated guinea pig serum in vivo, as compared with valine incorporation by cells labeled immediately after exposure to the guinea pig serum. Following exposure to heated guinea pig serum during 60 min, -OG cells incorporated less than half as much L-valine-C14 as did cells labeled immediately after exposure, and the incorporation of L-valine-C14 was still less after 120 min of exposure. By contrast, Lymphoma -RG1 cells, known from previous work to be wholly insusceptible to the effects of guinea pig serum in vivo and independent of need for extrinsic asparagine for protein synthesis and growth in vitro, showed no curtailment whatever of protein synthesis following exposures to the effects of heated guinea pig serum in vivo during periods of 15, 60, and 120 min. Reasons are given for considering the prompt inhibition of protein synthesis in the asparagine-dependent -OG cells a direct result of asparagine-deprivation induced in vivo by the injected guinea pig serum, the L-asparaginase of which presumably converted the available L-asparagine of the host to L-aspartic acid that was not taken up by the -OG cells. The synthesis of deoxyribonucleic acid by Lymphoma 6C3HED-OG cells, as measured by the incorporation of thymidme-H3, determined with the aid of liquid scintillation counting and autoradiography, was also altered by exposure of the lymphoma cells to the effects of heated guinea pig serum in vivo, though not during exposures of 15 and 60 min; only after an exposure of 120 min did the population of -OG cells incorporate notably less thymidine-H3 than did control populations, though after 240 min of exposure the -OG cells incorporated less than one-fifth as much tritiated thymidineas had -OG cells exposed to heated guinea pig serum for 60 min or to heated horse serum for periods up to 240 min. Autoradiographs indicated that DNA synthesis by -OG cells normally proceeds at an intense level that leads to some 60% of these cells being heavily labeled in autoradiographs at any given time; after exposure to the effects of heated guinea pig serum during 2 and 4 hr in vivo, however, the lymphoma cells lost their ability to incorporate enough tritiated thymidine to become heavily labeled, but approximately the same proportion of them (56 to 58%) retained their ability to incorporate sufficient tritiated thymidine to become lightly labeled. The possibility is considered that the inhibition of DNA synthesis in the asparagine-dependent -OG cells exposed to the effects of heated guinea pig serum in vivo may be secondary to the previously manifest inhibition of protein synthesis. Further, in tests of ribonucleic acid metabolism of Lymphoma 6C3HED-OG cells after exposure to the effects of heated guinea pig serum in vivo during periods of 15, 60, 120, and 240 min, the findings indicated that the ability of the lymphoma cells to synthesize RNA, as measured by their capacity to incorporate uridine-5-H3, remained unaltered during the exposures of 15, 60, and 120 min, but was substantially reduced following 240 min of exposure. The findings are considered in relation to the probability, disclosed in part by previous studies, that heated guinea pig serum brings about its effects upon Lymphoma 6C3HED-OG cells in vivo by providing active L-asparaginase in large amounts, which presumably converts the available (extracellular) asparagine of the host to aspartic acid, the latter not being taken up by the lymphoma cells in vivo or in vitro. Hence it seems likely that heated guinea pig serum in this way brings about a state of asparagine deprivation that is responsible for the sequential metabolic and morphologic alterations that become manifest in asparagine-dependent Lymphoma 6C3HED-OG cells following their exposure to the effects of guinea pig serum in vivo, as here described.


1992 ◽  
Vol 262 (6) ◽  
pp. C1471-C1477 ◽  
Author(s):  
J. A. Chromiak ◽  
H. H. Vandenburgh

Glucocorticoids induce rapid atrophy of fast skeletal myofibers in vivo, and either weight lifting or endurance exercise reduces this atrophy by unknown mechanisms. We examined the effects of the synthetic glucocorticoid dexamethasone (Dex) on protein turnover in tissue-cultured avian fast skeletal myofibers and determined whether repetitive mechanical stretch altered the myofiber response to Dex. In static cultures after 3-5 days, 10(-8) M Dex decreased total protein content 42-74%, total protein synthesis rates 38-56%, mean myofiber diameter 35%, myosin heavy chain (MHC) content 86%, MHC synthesis rate 44%, and fibronectin synthesis rate 29%. Repetitive 10% stretch-relaxations of the cultured myofibers for 60 s every 5 min for 3-4 days prevented 52% of the Dex-induced decrease in protein content, 42% of the decrease in total protein synthesis rate, 77% of the decrease in MHC content, 42% of the decrease in MHC synthesis rate, and 67% of the decrease in fibronectin synthesis rate. This in vitro model system will complement in vivo studies in understanding the mechanism by which mechanical activity and glucocorticoids interact to regulate skeletal muscle growth.


1988 ◽  
Vol 68 (3) ◽  
pp. 721-730 ◽  
Author(s):  
RICHARD J. EARLY ◽  
BRIAN W. McBRIDE ◽  
RONALD O. BALL

In vivo fractional rates of protein synthesis (FSR), based on both intracellular fluid (ICF) and arterial plasma specific radioactivity (SRA), were determined for the external intercostal muscle (EIC), gastrocnemius muscle, liver and kidneys of growing sheep during infusions of either saline or glucose (2 g h−1) plus insulin (1.2 U h−1; G+I). In vitro FSR and energy expenditures associated with protein synthesis (cycloheximide-sensitive respiration) and Na+, K+ transport (ouabain-sensitive respiration) were also determined in EIC muscle. In vivo FSR based on ICF SRA in muscle were not significantly different between G+I and S infused sheep (5.2 vs. 4.2% d−1 and 5.0 vs. 3.2% d−1 for EIC and gastrocnemius, respectively). In vivo FSR in the liver (54 vs. 61% d−1) and kidneys (38 vs. 55% d−1) were also not significantly different between G+I versus S infused sheep. Based on plasma SRA, FSR in all tissues were unaffected by treatments and were less (P < 0.05) than those calculated from ICF SRA. In vitro FSR and the energy expenditures associated with protein synthesis and Na+, K+ transport were not affected by G+I infusions. The average in vitro FSR in isolated EIC muscle (2.7% d−1) was 53% and 81% of the average in vivo FSR calculated from ICF and plasma SRA, respectively. Compared to data reported for nonruminants, these data suggest that rates of protein synthesis and energy expenditures associated with protein synthesis in ruminants are less influenced by insulin and glucose. Key words: Sheep, protein synthesis, insulin, glucose, Na+, K+ transport


1994 ◽  
Vol 76 (6) ◽  
pp. 2814-2819 ◽  
Author(s):  
E. J. Henriksen ◽  
K. A. Munoz ◽  
A. T. Aannestad ◽  
M. E. Tischler

The adaptive responses of myocardial protein metabolism to chronic increases in work load were evaluated in juvenile female Sprague-Dawley rats. Rats were studied under four conditions: normal weight bearing (N), voluntary wheel running (WR) for < or = 4 wk, head-down-tilt suspension for 7 days (HS), or wheel running (2 or 3 wk) followed by 7 days of suspension (WR-HS). WR activity plateaued after 2 wk at 16 km/day and was maintained through week 4. WR did not affect normal whole body growth. Protein metabolism was studied by measuring heart protein content and in vivo fractional rate of protein synthesis with the [3H]phenylalanine “flooding dose” method. Two weeks of WR increased (P < 0.05) absolute heart protein content (22%) and protein synthesis (21%) relative to age-matched N group values. These differences in protein content and synthesis were maintained for > or = 4 wk. Rats failed to gain significant body weight during suspension. Heart protein content increased (P < 0.05) by 12% to 26% as did protein synthesis (14% to 22%) in HS compared with N group. In WR-HS group, cardiac protein content and protein synthesis were maintained at significantly elevated levels. These findings indicate that 1) high-volume WR by young rats provides a convenient noninvasive method for producing rapid and substantial cardiac hypertrophy, which results, at least in part, from enhanced cardiac protein synthesis; and 2) head-down suspension of sedentary juvenile rats leads to increased cardiac protein synthesis, which helps to increase cardiac protein content despite a lack of whole body growth.


2012 ◽  
Vol 110 (2) ◽  
pp. 256-264 ◽  
Author(s):  
Xiangbing Mao ◽  
Xiangfang Zeng ◽  
Zhimin Huang ◽  
Junjun Wang ◽  
Shiyan Qiao

Leucine and leptin play important roles in regulating protein synthesis and degradation in skeletal muscles in vitro and in vivo. However, the objective of the present study was to determine whether leptin and leucine function synergistically in regulating protein metabolism of skeletal muscles. In the in vitro experiment, C2C12 myotubes were cultured for 2 h in the presence of 5 mm-leucine and/or 50 ng/ml of leptin. In the in vivo experiment, C57BL/6 and ob/ob mice were randomly assigned to be fed a non-purified diet supplemented with 3 % l-leucine or 2·04 % l-alanine (isonitrogenous control) for 14 d. Ob/ob mice were injected intraperitoneally with sterile PBS or recombinant mouse leptin (0·1 μg/g body weight) for 14 d. In C57BL/6 mice, dietary leucine supplementation increased (P< 0·05) plasma leptin, leptin receptor expression and protein synthesis in skeletal muscles, but reduced (P< 0·05) plasma urea and protein degradation in skeletal muscles. Dietary leucine supplementation and leptin injection increased the relative weight of the gastrocnemius and soleus muscles in ob/ob mice. Moreover, leucine and leptin treatments stimulated (P< 0·05) protein synthesis and inhibited (P< 0·05) protein degradation in C2C12 myotubes and skeletal muscles of ob/ob mice. There were interactions (P< 0·05) between the leucine and leptin treatments with regard to protein metabolism in C2C12 myotubes and soleus muscles of ob/ob mice but not in the gastrocnemius muscles of ob/ob mice. Collectively, these results suggest that leptin and leucine synergistically regulate protein metabolism in skeletal muscles both in vitro and in vivo.


1981 ◽  
Vol 46 (03) ◽  
pp. 593-596 ◽  
Author(s):  
Linda C Knight ◽  
Andrei Z Budzynski ◽  
Stephanie A Olexa

SummaryThe properties of human fibrinogen labeled with 125-Iodine using Iodogen (1, 3, 4, 6-tetrachloro-3α, 6α-diphenylglycoluril) as an oxidizing agent were compared with those of an iodine monochloride labeled counterpart. It was found that thrombin clottability, binding to staphylococci, the relative specific radioactivity of the Aα, Bβ, and γ chains and in vivo clearance from plasma in rabbits were the same in these two labeled fibrinogen preparations. Labeling efficiency was higher when iodogen was used. It is concluded that human fibrinogen labeled with radioiodine using the Iodogen technique is suitable for studies in vitro and in vivo.


Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


Sign in / Sign up

Export Citation Format

Share Document