Effect of somatostatin on plasma glucagon and insulin, and glucose turnover in exercising sheep

1979 ◽  
Vol 47 (2) ◽  
pp. 273-278 ◽  
Author(s):  
R. P. Brockman

To examine the roles of glucagon and insulin in exercise, four sheep were run on a treadmill with and without simultaneous infusion of somatostatin (SRIF), a peptide that suppresses glucagon and insulin secretion. SRIF infusion suppressed the exercise-induced rise in plasma glucagon during both moderate (5--5.5 km/h) and strenuous exercise (7.0 km/h). In addition, SRIF prevented the rise insulin concentrations during moderate exercise. During strenuous exercise, insulin concentrations were depressed in both groups. The infusion of SRIF was associated with a reduction in exercise-induced glucose production, as determined by infusion of [6–3H]glucose, during the first 15 min of both moderate and strenuous exercise compared to controls. Beyond 15 min glucose production was not significantly altered by SRIF infusions. These data are consistent with glucagon having an immediate, but only transient, stimulatory effect on the exercise-induced hepatic glucose production.

1989 ◽  
Vol 257 (5) ◽  
pp. E704-E711 ◽  
Author(s):  
D. Elahi ◽  
G. S. Meneilly ◽  
K. L. Minaker ◽  
D. K. Andersen ◽  
J. W. Rowe

The role of the pattern of insulin secretion on hepatic glucose production (HGP) was evaluated with hyperglycemic and euglycemic clamp studies in six normal young nonobese subjects. In the hyperglycemic studies, glucose levels were raised and maintained at 98 mg/dl above basal for 150 min. Each subject responded with a biphasic pattern of immunoreactive insulin (IRI) release. HGP was completely suppressed by 20 min, coincident with the first-phase insulin release. HGP then rose steadily, surpassing the basal rate by 100 min when IRI had reached the peak levels of the first phase. By 130 min, when IRI had surpassed the peak first-phase levels, HGP began to fall. In the euglycemic studies with a square wave of hyperinsulinemia (approximately 25 microU/ml), HGP was suppressed to approximately 60% of basal and remained at that rate. We next repeated the hyperglycemic studies with somatostatin, glucagon, and insulin infusions. In these studies with a square wave of hyperinsulinemia (approximately 40 microU/ml, the level observed during the first phase IRI of the previous hyperglycemic clamps), HGP was suppressed to approximately 43% of basal rate and remained at that rate. These studies indicate insulin regulation of HGP is not only dependent on insulin level but may be strongly influenced by the pattern, over time, of insulin secretion.


1990 ◽  
Vol 259 (2) ◽  
pp. E195-E203 ◽  
Author(s):  
D. H. Wasserman ◽  
P. E. Williams ◽  
D. B. Lacy ◽  
D. Bracy ◽  
A. D. Cherrington

To establish the role of hepatic nerves in hepatic glycogenolytic and gluconeogenic regulation during exercise, dogs underwent a laparotomy during which the hepatic nerves were either left intact (C; n = 8) or cut (DN; n = 5). At least 17 days after surgery, dogs were studied during 150 min of treadmill exercise (12% grade, 100 m/min). Glucose production (Ra) and gluconeogenesis (GNG) were assessed by combining [3-3H]glucose, [U-14C]alanine, and indocyanine green infusions with arterial, portal vein, and hepatic vein sampling. Glucagon and insulin were similar at rest and exercise in both groups. Norepinephrine rose from 145 +/- 10 to 242 +/- 32 pg/ml by 150 min of exercise in C and from 150 +/- 25 to 333 +/- 83 pg/ml in DN. Epinephrine rose from 66 +/- 7 pg/ml at rest to 108 +/- 10 and 148 +/- 24 pg/ml after 30 and 150 min of exercise in C and from 90 +/- 15 pg/ml at rest to 185 +/- 33 (P less than 0.05 compared with C) and 194 +/- 36 pg/ml after 30 and 150 min of exercise in DN. Plasma glucose fell gradually from 108 +/- 2 and 106 +/- 3 mg/dl at rest to 96 +/- 4 and 92 +/- 8 by the end of exercise in C and DN, respectively. Ra was similar in C and DN rising from 3.2 +/- 0.2 to 8.7 +/- 0.6 and 2.6 +/- 0.2 to 7.5 +/- 1.1 mg.kg-1.min-1, respectively, by the end of exercise. Minimum and maximum rates of GNG from alanine, glycerol, and lactate were elevated in DN compared with C during rest and exercise. However, the exercise-induced changes in GNG were similar in both groups. In conclusion, nerves to the liver are not essential to the increased Ra and glucose homeostasis during moderate-intensity exercise.


1979 ◽  
Vol 57 (8) ◽  
pp. 848-852 ◽  
Author(s):  
Ronald P. Brockman

The effect of somatostatin (SRIF) on glucagon and insulin secretion was examined in fed and fasted sheep. This was related to changes in glucose production. Infusion of SRIF at 80 μg/h caused a marked reduction in plasma glucagon concentrations. However, the insulin response to SRIF infusion was not consistent; its concentrations decreased occasionally, but often did not change. The depression of glucagon was not associated with a significant reduction in blood glucose concentrations in either fed or fasted sheep, but was associated with a reduction in glucose production by 12–15%. The inhibitory effect of insulin on glucose production was not markedly increased by glucagon deficiency. Infusion of insulin at 1.17 U/h with SRIF decreased glucose production only an additional 10%. Thus, it appears that under basal conditions pancreatic hormonal influences on hepatic glucose production were relatively small in sheep. This implies that under normal conditions in sheep, substrate supply has a much greater impact on hepatic glucogenesis than do hormones.


Diabetes ◽  
1987 ◽  
Vol 36 (11) ◽  
pp. 1320-1328 ◽  
Author(s):  
L. Groop ◽  
L. Luzi ◽  
A. Melander ◽  
P. H. Groop ◽  
K. Ratheiser ◽  
...  

1996 ◽  
Vol 271 (1) ◽  
pp. R191-R199 ◽  
Author(s):  
M. Kjaer ◽  
S. F. Pollack ◽  
T. Mohr ◽  
H. Weiss ◽  
G. W. Gleim ◽  
...  

To examine the importance of blood-borne vs. neural mechanisms for hormonal responses and substrate mobilization during exercise, six spinal cord-injured tetraplegic (C5-T1) males (mean age: 35 yr, range: 24-55 yr) were recruited to perform involuntary, electrically induced cycling [functional electrical stimulation (FES)] to fatigue for 24.6 +/- 2.3 min (mean and SE), and heart rate rose from 67 +/- 7 (rest) to 107 +/- 5 (exercise) beats/min. Voluntary arm cranking in tetraplegics (ARM) and voluntary leg cycling in six matched, long-term immobilized (2-12 mo) males (Vol) served as control experiments. In FES, peripheral glucose uptake increased [12.4 +/- 1.1 (rest) to 19.5 +/- 4.3 (exercise) mumol.min-1.kg-1; P < 0.05], whereas hepatic glucose production did not change from basal values [12.4 +/- 1.4 (rest) vs. 13.0 +/- 3.4 (exercise) mumol.min-1.kg-1]. Accordingly, plasma glucose decreased [from 5.4 +/- 0.3 (rest) to 4.7 +/- 0.3 (exercise) mmol/l; P < 0.05]. Plasma glucose did not change in response to ARM or Vol. Plasma free fatty acids and beta-hydroxybutyrate decreased only in FES experiments (P < 0.05). During FES, increases in growth hormone (GH) and epinephrine and decreases in insulin concentrations were abolished. Although subnormal throughout the exercise period, norepinephrine concentrations increased during FES, and responses of heart rate, adrenocorticotropic hormone, beta-endorphin, renin, lactate, and potassium were marked. In conclusion, during exercise, activity in motor centers and afferent muscle nerves is important for normal responses of GH, catecholamines, insulin, glucose production, and lipolysis. Humoral feedback and spinal or simple autonomic nervous reflex mechanisms are not sufficient. However, such mechanisms are involved in redundant control of heart rate and neuroendocrine activity in exercise.


1998 ◽  
Vol 274 (1) ◽  
pp. E23-E28 ◽  
Author(s):  
Réjean Drouin ◽  
Carole Lavoie ◽  
Josée Bourque ◽  
Francine Ducros ◽  
Danielle Poisson ◽  
...  

This study was designed to characterize the impact of endurance training on the hepatic response to glucagon. We measured the effect of glucagon on hepatic glucose production (HGP) in resting trained ( n = 8) and untrained ( n = 8) healthy male subjects (maximal rate of O2 consumption: 65.9 ± 1.6 vs. 46.8 ± 0.6 ml O2 ⋅ kg−1 ⋅ min−1, respectively, P < 0.001). Endogenous insulin and glucagon were suppressed by somatostatin (somatotropin release-inhibiting hormone) infusion (450 μg/h) over 4 h. Insulin (0.15 mU ⋅ kg−1 ⋅ min−1) was infused throughout the study, and glucagon (1.5 ng ⋅ kg−1 ⋅ min−1) was infused over the last 2 h. During the latter period, plasma glucagon and insulin remained constant at 138.2 ± 3.1 vs. 145.3 ± 2.1 ng/l and at 95.5 ± 4.5 vs. 96.2 ± 1.9 pmol/l in trained and untrained subjects, respectively. Plasma glucose increased and peaked at 11.4 ± 1.1 mmol/l in trained subjects and at 8.9 ± 0.8 mmol/l in untrained subjects ( P < 0.001). During glucagon stimulation, the mean increase in HGP area under the curve was 15.8 ± 2.8 mol ⋅ kg−1 ⋅ min−1in trained subjects compared with 7.4 ± 1.6 mol ⋅ kg−1 ⋅ min−1in untrained subjects ( P < 0.01) over the first hour and declined to 6.8 ± 2.8 and 4.9 ± 1.4 mol ⋅ kg−1 ⋅ min−1during the second hour. In conclusion, these observations indicate that endurance training is associated with an increase in HGP in response to physiological levels of glucagon, thus suggesting an increase in hepatic glucagon sensitivity.


Author(s):  
Dale S. Edgerton ◽  
Mary Courtney Moore ◽  
Justin M. Gregory ◽  
Guillaume Kraft ◽  
Alan D. Cherrington

Pancreatic insulin secretion produces an insulin gradient at the liver compared to the rest of the body (approximately 3:1). This physiologic distribution is lost when insulin is injected subcutaneously, causing impaired regulation of hepatic glucose production and whole body glucose uptake, as well as arterial hyperinsulinemia. Thus, the hepatoportal insulin gradient is essential to the normal control of glucose metabolism during both fasting and feeding. Insulin can regulate hepatic glucose production and uptake through multiple mechanisms, but its direct effects on the liver are dominant under physiologic conditions. Given the complications associated with iatrogenic hyperinsulinemia in patients treated with insulin, insulin designed to preferentially target the liver may have therapeutic advantages.


2016 ◽  
Vol 311 (1) ◽  
pp. R200-R208 ◽  
Author(s):  
Christine Culpepper ◽  
Stephanie R. Wesolowski ◽  
Joshua Benjamin ◽  
Jennifer L. Bruce ◽  
Laura D. Brown ◽  
...  

Hepatic glucose production (HGP) normally begins just prior to birth. Prolonged fetal hypoglycemia, intrauterine growth restriction, and acute hypoxemia produce an early activation of fetal HGP. To test the hypothesis that prolonged hypoxemia increases factors which regulate HGP, studies were performed in fetuses that were bled to anemic conditions (anemic: n = 11) for 8.9 ± 0.4 days and compared with control fetuses ( n = 7). Fetal arterial hematocrit and oxygen content were 32% and 50% lower, respectively, in anemic vs. controls ( P < 0.005). Arterial plasma glucose was 15% higher in the anemic group ( P < 0.05). Hepatic mRNA expression of phosphonenolpyruvate carboxykinase ( PCK1) was twofold higher in the anemic group ( P < 0.05). Arterial plasma glucagon concentrations were 70% higher in anemic fetuses compared with controls ( P < 0.05), and they were positively associated with hepatic PCK1 mRNA expression ( P < 0.05). Arterial plasma cortisol concentrations increased 90% in the anemic fetuses ( P < 0.05), but fetal cortisol concentrations were not correlated with hepatic PCK1 mRNA expression. Hepatic glycogen content was 30% lower in anemic vs. control fetuses ( P < 0.05) and was inversely correlated with fetal arterial plasma glucagon concentrations. In isolated primary fetal sheep hepatocytes, incubation in low oxygen (3%) increased PCK1 mRNA threefold compared with incubation in normal oxygen (21%). Together, these results demonstrate that glucagon and PCK1 may potentiate fetal HGP during chronic fetal anemic hypoxemia.


2009 ◽  
Vol 94 (4) ◽  
pp. 1401-1408 ◽  
Author(s):  
Hua Wang ◽  
Nicholas P. Hays ◽  
Swapan K. Das ◽  
Rebekah L. Craig ◽  
Winston S. Chu ◽  
...  

Abstract Objective: Linkage to type 2 diabetes (T2D) is well replicated on chromosome 1q21-q23. Within this region, T2D was associated with common single nucleotide polymorphisms that marked an extended linkage disequilibrium block, including the liver pyruvate kinase gene (PKLR), in several European-derived populations. In this study we sought to determine the molecular basis for the association and the phenotypic consequences of the risk haplotype. Research Design and Methods: Genes surrounding PKLR were resequenced in European-American and African-American cases and controls, and association with T2D was tested. Copy number variants (CNVs) were tested for four regions with real-time PCR. Expression of genes in the region was tested in adipose and muscle from nondiabetic subjects with each genotype. Insulin secretion, insulin sensitivity, and hepatic glucose production were tested in nondiabetic individuals with each haplotype combination. Results: No coding variant in the region was associated with T2D. CNVs were rare and not associated with T2D. PKLR was not expressed in available tissues, but expression of genes HCN3, CLK2, SCAMP3, and FDPS was not associated with haplotype combinations in adipose or muscle. Haplotype combinations were not associated with insulin secretion or peripheral insulin sensitivity, but homozygous carriers of the risk haplotype had increased hepatic glucose production during hyperinsulinemia. Conclusions: Noncoding variants in the PKLR region likely alter gene expression of one or more genes. Our extensive physiological and molecular studies suggest increased hepatic glucose production and reduced hepatic insulin sensitivity, thus pointing to PKLR itself as the most likely candidate gene in this population.


2002 ◽  
Vol 92 (1) ◽  
pp. 188-194 ◽  
Author(s):  
Victoria Matas Bonjorn ◽  
Martin G. Latour ◽  
Patrice Bélanger ◽  
Jean-Marc Lavoie

The purpose of the present study was to test the hypothesis that a prior period of exercise is associated with an increase in hepatic glucagon sensitivity. Hepatic glucose production (HGP) was measured in four groups of anesthetized rats infused with glucagon (2 μg · kg−1 · min−1 iv) over a period of 60 min. Among these groups, two were normally fed and, therefore, had a normal level of liver glycogen (NG). One of these two groups was killed at rest (NG-Re) and the other after a period of exercise (NG-Ex; 60 min of running, 15–26 m/min, 0% grade). The two other groups of rats had a high hepatic glycogen level (HG), which had been increased by a fast-refed diet, and were also killed either at rest (HG-Re) or after exercise (HG-Ex). Plasma glucagon and insulin levels were increased similarly in all four conditions. Glucagon-induced hyperglycemia was higher ( P < 0.01) in the HG-Re group than in all other groups. HGP in the HG-Re group was not, however, on the whole more elevated than in the NG-Re group. Exercised rats (NG-Ex and HG-Ex) had higher hyperglycemia, HGP, and glucose utilization than rested rats in the first 10 min of the glucagon infusion. HG-Ex group had the highest HGP throughout the 60-min experiment. It is concluded that hyperglucagonemia-induced HGP is stimulated by a prior period of exercise, suggesting an increased sensitivity of the liver to glucagon during exercise.


Sign in / Sign up

Export Citation Format

Share Document