Pressure-flow relationships in a collaterally ventilating dog lung segment

1983 ◽  
Vol 54 (4) ◽  
pp. 956-960 ◽  
Author(s):  
L. E. Olson ◽  
J. R. Rodarte ◽  
N. E. Robinson

We evaluated the pressure (P)-flow (V) relationship in collaterally ventilating dog lung segments by passing He, N2, and SF6 through a bronchoscope (5 mm OD) wedged in a peripheral airway. Measurements were made at functional residual capacity (FRC) and two higher lung volumes, keeping segment-to-airway opening pressure constant (3 cmH2O) in five anesthetized, paralyzed, vagotomized, supine dogs. Average flows ranged from 5.0 to 8.0 ml/s for He, 4.5 to 7.5 ml/s for N2, and 3.4 to 4.7 ml/s for SF6. When these data were fitted as P = K1/3/3 mu V + K2 rho V2, density-dependent pressure losses were unimportant when He and N2 were used, suggesting laminar flow with these gases. A dimensionless plot of the total pressure drop relative to a reference dynamic pressure as a function of Reynolds number at the bronchoscope tip suggested that flow through the segment behaved as if it were laminar at Reynolds numbers less than 100. Furthermore, when the airway diameter used to compute the normalized pressure and Reynolds number was scaled as the cubic root of lung volume, curves for all three gases were superimposed, suggesting that the dimensions of intrasegmental/collateral airways scale as lung volume 1/3.

1992 ◽  
Vol 73 (2) ◽  
pp. 522-529 ◽  
Author(s):  
L. E. Olson

We evaluated the pressure-flow relationships in collaterally ventilating segments of excised pony lungs by infusing N2, He, Ne, or SF6 at known flows (V) through a catheter wedged in a peripheral airway. Measurements were made at segment- (Ps) to-airway opening (Pao) pressure differentials of 3–15 cmH2O when the lungs were held at transpulmonary pressures of 5, 10, and 15 cmH2O. The data were analyzed both by calculating collateral resistance (Ps-Pao/V) and by constructing Moody-type plots of normalized pressure drop [(Ps-Pao)/(1/2 rho U2, where rho is density and U is velocity)] against Reynolds number to assess the pattern of flow through the segment and the change in dimension of the flow channels as Ps and Pao were changed. The interpretations from these analyses were compared with radiographic measurements of the diameters of small airways within the collaterally ventilating lung segment at similar pressures. Collateral resistance increased as Ps-Pao increased at high Reynolds numbers, i.e., high flows or dense gas (SF6). Analysis of the Moody-type plots revealed that flow was density dependent at Reynolds number greater than 100, which frequently occurred when N2 was the inflow gas. The radiographic data revealed that small airway diameter increased as Ps-Pao increased at all lung volumes. In addition, at 5 cmH2O Pao, small-airway diameter was smaller for a given Ps in the nonhomogeneous case (Ps greater than Pao) than small-airway diameter for the same Ps in the homogeneous case (Ps = Pao). We interpret these data to suggest that the surrounding lung prevented the segment from expanding in the nonhomogeneous case.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 59 (6) ◽  
pp. 1757-1765 ◽  
Author(s):  
L. E. Olson

The effect of changing segment pressure (Ps) and airway opening pressure (Pao) on flow through a collaterally ventilating lung segment was evaluated in intact and excised dog lungs. He, N2, and SF6 were passed through the lung segment distal to a catheter wedged in a peripheral airway at driving pressures (Ps - Pao) between 0.25 and 2 cm H2O. Eight excised caudal lobes were studied at Pao = 5, 10, and 15 cm H2O. Flow was directly related to Ps - Pao and Pao and inversely related to the density of the gas. A dimensionless plot of the driving pressure normalized to a reference dynamic pressure as a function of Reynolds number (Re) indicated that flow through the segment behaved as if it were laminar at Re less than 100 and that increasing Pao increased the dimension of the pathways conducting flow as shown previously. Small changes in Ps had no effect on pathway geometry or on the pattern of flow through the segment at Pao = 10 and 15 cmH2O. At Pao = 5 cm H2O increasing segment pressure appeared to increase the dimensions of the flow pathways slightly. Similar changes in Ps - Pao had no consistent effect on flow pattern or pathway geometry in six anesthetized, paralyzed, vagotomized dogs at functional residual capacity or after widely opening the chest (Pao = 5 cm H2O). These results suggest that, at large lobe volumes, airways (including collateral pathways) are maximally dilated and therefore relatively insensitive to small changes in segment pressure.


1999 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow in microchannels etched in silicon with hydraulic diameters of 9.7, 19.6, and 46.6 μm, and Reynolds numbers ranging from 0. 2 to 1000. The objectives of this research are (1) to measure the pressure distribution along the length of a microchannel; and (2) to determine the friction factor within the fully developed region of the microchannel. The pressure distribution is presented as absolute local pressure plotted against the distance from the microchannel inlet. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number with the outlet Knudsen number, Kn, as a curve parameter. The following conclusions have been reached in the present investigation: (1) Pressure losses at the microchannel entrance can be significant; (2) the product, f*Re, when measured sufficiently far away from the entrance and exit is a constant in the laminar flow region; and (3) the friction factor decreases as the Knudsen number increases.


Author(s):  
Karsten Tawackolian ◽  
Martin Kriegel

AbstractThis study looks to find a suitable turbulence model for calculating pressure losses of ventilation components. In building ventilation, the most relevant Reynolds number range is between 3×104 and 6×105, depending on the duct dimensions and airflow rates. Pressure loss coefficients can increase considerably for some components at Reynolds numbers below 2×105. An initial survey of popular turbulence models was conducted for a selected test case of a bend with such a strong Reynolds number dependence. Most of the turbulence models failed in reproducing this dependence and predicted curve progressions that were too flat and only applicable for higher Reynolds numbers. Viscous effects near walls played an important role in the present simulations. In turbulence modelling, near-wall damping functions are used to account for this influence. A model that implements near-wall modelling is the lag elliptic blending k-ε model. This model gave reasonable predictions for pressure loss coefficients at lower Reynolds numbers. Another example is the low Reynolds number k-ε turbulence model of Wilcox (LRN). The modification uses damping functions and was initially developed for simulating profiles such as aircraft wings. It has not been widely used for internal flows such as air duct flows. Based on selected reference cases, the three closure coefficients of the LRN model were adapted in this work to simulate ventilation components. Improved predictions were obtained with new coefficients (LRNM model). This underlined that low Reynolds number effects are relevant in ventilation ductworks and give first insights for suitable turbulence models for this application. Both the lag elliptic blending model and the modified LRNM model predicted the pressure losses relatively well for the test case where the other tested models failed.


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


Author(s):  
Thanesh Deva Asirvatham ◽  
Dara W. Childs ◽  
Stephen Phillips

A flat-plate tester is used to measure the friction-factor behavior for a hole-pattern-roughened surface facing a smooth surface with compressed air as the medium. Measurements of mass flow rate, static pressure drop and stagnation temperature are carried out and used to find a combined (stator + rotor) Fanning friction factor value. In addition, dynamic pressure measurements are made at four axial locations at the bottom of individual holes of the rough plate and at facing locations in the smooth plate. The description of the test rig and instrumentation, and the procedure of testing and calculation are explained in detail in Kheireddin in 2009 and Childs et al. in 2010. Three hole-pattern flat-plates with a hole-pattern diameter of 12.15 mm were tested having depths of 0.9, 1.9, and 2.9 mm. Tests were done with clearances at 0.254, 0.381, and 0.653 mm, and inlet pressures of 56, 70 and 84 bar for a range of pressure ratios, yielding a Reynolds-number range of 100,000 to 800,000. The effects of Reynolds number, clearance, inlet pressure, and hole depth on friction factor are studied. The data are compared to friction factor values of three hole-pattern flat-plates with 3.175 mm diameter holes with hole depths of 1.9, 2.6, and 3.302 mm tested in the same rig described by Kheireddin in 2009. The test program was initiated mainly to investigate a “friction-factor jump” phenomenon cited by Ha et al. in 1992 in test results from a flat-plate tester using facing hole-pattern plates where, at elevated values of Reynolds numbers, the friction factor began to increase steadily with increasing Reynolds numbers. Friction-factor jump was not observed in any of the current test cases.


1994 ◽  
Vol 77 (2) ◽  
pp. 1015-1020 ◽  
Author(s):  
D. J. Turner ◽  
C. J. Lanteri ◽  
P. N. LeSouef ◽  
P. D. Sly

Forced expiratory flow-volume (FEFV) curves can be generated from end-tidal inspiration in infants with use of an inflatable jacket. We have developed a technique to raise lung volume in the infant before generation of FEFV curves. Measurements of pressure transmission to the airway opening by use of static maneuvers have shown no change with increasing lung volume above end-tidal inspiration. The aim of this study was to determine, under dynamic conditions (i.e., during rapid thoracic compression), whether the efficiency of pressure transmission across the chest wall is altered by raising lung volume above the tidal range. Dynamic pressure transmission (Ptx,dyn) was measured in five infants (age 6–17 mo). Jacket pressure (Pj), esophageal pressure, and volume were measured throughout passive and FEFV curves at lung volumes set by 10, 15, and 20 cmH2O preset pressure. The group mean Ptx,dyn was 37 +/- 6% (SE) of Pj at end-tidal inspiration, and no change was seen with further increases in lung volume. However, a mean decrease in Ptx,dyn of 42% was evident throughout the tidal volume range (i.e., from end-tidal inspiration to end expiration). Isovolume static pressure transmission (Ptx,st) was measured in three of the five infants by inflation of the jacket in a stepwise manner with the airway closed. Measurements were made at end-tidal inspiration and lung volumes at 10, 15, and 20 cmH2O preset pressure. Resulting changes in Pj, esophageal pressure, and airway opening pressure were compared using linear regressions to determine Ptx,st.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Majid Nabavi ◽  
Luc Mongeau

In this study, two-dimensional laminar incompressible and turbulent compressible flow through the planar diffuser (gradual expansion) for different divergence half angles of the diffuser (θ), and different Reynolds numbers (Re) was numerically studied. The effects of θ on the critical Reynolds number at which the onset of asymmetric flow is observed, were investigated. In the laminar flow regime, it was observed that for every values of θ, there is a critical Re beyond which the flow is asymmetric. However, in the turbulent flow regime, for θ ≥ 20°, even at low Reynolds number the flow is asymmetric. Only for θ ≤ 10°, symmetric flow was observed below a critical Re.


1965 ◽  
Vol 87 (2) ◽  
pp. 525-529 ◽  
Author(s):  
S. Soundranayagam

The flow through two ISA nozzles of area ratio zero and 0.4 was investigated to determine the nature of the flow and its variation with Reynolds number. Separation occurs within the nozzle of zero area ratio, the size of the bubble increasing with decreasing Reynolds number. The predicted discharge coefficient based on a simplified flow model agrees with experiment for large Reynolds numbers. Upstream influences affect the performance of the nozzle of area ratio 0.4. The flows through the two nozzles are not comparable, and potential-flow results cannot be used to explain flow in venturis and nozzles in pipes. The discharge-coefficient curve for area ratio 0.4 shows a distinct hump when based on the head differential measured as for venturis, but no hump when based on the head differential across the corner taps.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Allan I. J. Love ◽  
Donald Giddings ◽  
Henry Power

The turbulent flow through a 3D diffuser featuring a double expansion is investigated using computational fluid dynamics. Time dependent simulations are reported using the stress omega Reynolds stress model available in ANSYS FLUENT 13.0. The flow topography and characteristics over a range of Reynolds numbers from 42,000 to 170,000 is reported, and its features are consistent with those investigated for other similar geometries. A transition from a chaotic separated flow to one featuring one large recirculation in one corner of the diffuser is predicted at a Reynolds number of 80,000. For a Reynolds number of 170,000 a precessing/flapping motion of the main flow field was identified, the frequency of which is consistent with other numerical and experimental studies.


Sign in / Sign up

Export Citation Format

Share Document