Blood pressure and hemodynamic responses after exercise in older hypertensives

1987 ◽  
Vol 63 (1) ◽  
pp. 270-276 ◽  
Author(s):  
J. M. Hagberg ◽  
S. J. Montain ◽  
W. H. Martin

Recently, systolic and diastolic blood pressure have been reported to be significantly lower for several hours after exercise than when measured at rest before exercise in individuals with essential hypertension. We sought to determine the hemodynamic mechanism underlying this reduction in blood pressure. Twenty-four men and women 60–69 yr of age with persistent essential hypertension completed one of the following protocols: exercise at 50% of maximum O2 consumption (VO2 max) followed by 1 h of recovery, exercise at 70% of VO2 max followed by 3 h of recovery, or a 4-h control study. Systolic pressure was significantly lower during recovery after both intensities of exercise, but diastolic pressure was unchanged. The lower blood pressure was primarily due to a reduction in cardiac output, since total peripheral resistance was increased throughout both recovery periods. Cardiac output was reduced in recovery because of a reduction in stroke volume. Heart rate was above, or no different from, that at rest before exercise. Changes in plasma volume could not entirely account for the reduction in stroke volume. Therefore, other mechanisms altering venous return and/or myocardial contractility appear to be responsible for the reduction in systolic blood pressure evident after a single bout of submaximal exercise in individuals with essential hypertension.

1988 ◽  
Vol 254 (4) ◽  
pp. H811-H815 ◽  
Author(s):  
D. G. Parkes ◽  
J. P. Coghlan ◽  
J. G. McDougall ◽  
B. A. Scoggins

The hemodynamic and metabolic effects of long-term (5 day) infusion of human atrial natriuretic factor (ANF) were examined in conscious chronically instrumented sheep. Infusion of ANF at 20 micrograms/h, a rate below the threshold for an acute natriuretic effect, decreased blood pressure by 9 +/- 1 mmHg on day 5, associated with a fall in calculated total peripheral resistance. On day 1, ANF reduced cardiac output, stroke volume, and blood volume, effects that were associated with an increase in heart rate and calculated total peripheral resistance and a small decrease in blood pressure. On days 4 and 5 there was a small increase in urine volume and sodium excretion. On day 5 an increase in water intake and body weight was observed. No change was seen in plasma concentrations of renin, arginine vasopressin, glucose, adrenocorticotropic hormone, or protein. This study suggests that the short-term hypotensive effect of ANF results from a reduction in cardiac output associated with a fall in both stroke volume and effective blood volume. However, after 5 days of infusion, ANF lowers blood pressure via a reduction in total peripheral resistance.


1989 ◽  
Vol 256 (3) ◽  
pp. R778-R785 ◽  
Author(s):  
M. I. Talan ◽  
B. T. Engel

Heart rate, stroke volume, and intra-arterial blood pressure were monitored continuously in each of four monkeys, 18 consecutive h/day for several weeks. The mean heart rate, stroke volume, cardiac output, systolic and diastolic blood pressure, and total peripheral resistance were calculated for each minute and reduced to hourly means. After base-line data were collected for approximately 20 days, observation was continued for equal periods of time under conditions of alpha-sympathetic blockade, beta-sympathetic blockade, and double sympathetic blockade. This was achieved by intra-arterial infusion of prazosin, atenolol, or a combination of both in concentration sufficient for at least 75% reduction of response to injection of agonists. The results confirmed previous findings of a diurnal pattern characterized by a fall in cardiac output and a rise in total peripheral resistance throughout the night. This pattern was not eliminated by selective blockade, of alpha- or beta-sympathetic receptors or by double sympathetic blockade; in fact, it was exacerbated by sympathetic blockade, indicating that the sympathetic nervous system attenuates these events. Because these findings indicate that blood volume redistribution is probably not the mechanism mediating the observed effects, we have hypothesized that a diurnal loss in plasma volume may mediate the fall in cardiac output and that the rise in total peripheral resistance reflects a homeostatic regulation of arterial pressure.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1734 ◽  
Author(s):  
Yaw-Syan Fu ◽  
Sheng-I Lue ◽  
Shiuan-Yea Lin ◽  
Chi-Lun Luo ◽  
Chi-Chen Chou ◽  
...  

Arterial pressure of each new breeding spontaneous Phase-1 hypertension (P1-HT) rat was recorded for 5 min by intravascular femoral artery catheter that served as a reference value prior to treatment. In the acute antihypertensive test, 0.36 g/kg Bwt of Plantago asiatica seed extract (PSE) was administered, via gavage feeding, to P1-HT rats, and the arterial pressures were continuously recorded for 1 h. The acute antihypertensive effects of PSE on P1-HT rats appeared within 15 min after PSE administration and lasted over 1 h with systolic pressure decreased 31.5 mmHg and diastolic pressure decreased 18.5 mmHg. The systolic pressure decreased 28 mmHg and diastolic pressure decreased 16 mmHg in P1-HT rats when simultaneously compared with verapamil hydrochloride (reference drug), whereas there were no significant differences in the pretreated reference values of acute PSE treatment and the untreated control. In the chronic test, P1-HT rats received 0.36 g/kg Bwt day of PSE or equal volume of water for 4 weeks via oral gavage, and the lower blood pressure tendencies of chronic PSE treatment were also found when compared with the controls. The antihypertensive values of PSE were also confirmed in spontaneously hypertensive rats (SHRs). Oral administration with PSE can effectively moderate blood pressure within an hour, while taking PSE daily can control the severity of hypertension, suggesting PSE is a potentially antihypertensive herb.


1981 ◽  
Vol 61 (s7) ◽  
pp. 373s-375s ◽  
Author(s):  
P. D. Arkwright ◽  
L. J. Beilin ◽  
I. Rouse ◽  
B. K. Armstrong ◽  
R. Vandongen

1. The association between alcohol consumption and blood pressure was studied in 491 Government employees. The men, aged 21–45 years, volunteered to complete a health questionnaire and submitted to standardized measurements of blood pressure, heart rate and body size. 2. Average weekly alcohol consumption correlated with systolic pressure (r = 0.18, P < 0.001) but not with diastolic pressure. Systolic pressure increased progressively with increasing alcohol consumption with no obvious threshold effect. The effect of alcohol was independent of age, obesity (Quetelet's index) or cigarette smoking. 3. Results indicate that alcohol ranks close to obesity as a preventable cause of essential hypertension in the community.


1997 ◽  
Vol 83 (2) ◽  
pp. 371-375 ◽  
Author(s):  
Oommen P. Mathew

Mathew, Oommen P. Effects of transient intrathoracic pressure changes (hiccups) on systemic arterial pressure. J. Appl. Physiol. 83(2): 371–375, 1997.—The purpose of the study was to determine the effect of transient changes in intrathoracic pressure on systemic arterial pressure by utilizing hiccups as a tool. Values of systolic and diastolic pressures before, during, and after hiccups were determined in 10 intubated preterm infants. Early-systolic hiccups decreased systolic blood pressure significantly ( P < 0.05) compared with control (39.38 ± 2.72 vs. 46.46 ± 3.41 mmHg) and posthiccups values, whereas no significant change in systolic blood pressure occurred during late-systolic hiccups. Diastolic pressure immediately after the hiccups remained unchanged during both early- and late-systolic hiccups. In contrast, diastolic pressure decreased significantly ( P < 0.05) when hiccups occurred during diastole (both early and late). Systolic pressures of the succeeding cardiac cycle remained unchanged after early-diastolic hiccups, whereas they decreased after late-diastolic hiccups. These results indicate that transient decreases in intrathoracic pressure reduce systemic arterial pressure primarily through an increase in the volume of the thoracic aorta. A reduction in stroke volume appears to contribute to the reduction in systolic pressure.


1976 ◽  
Vol 51 (s3) ◽  
pp. 525s-526s
Author(s):  
H. Æ. Jensen ◽  
K. Rasmussen ◽  
N. Mosbæk

1. The β1-adrenoreceptor-blocking agent atenolol was studied in the treatment of twelve out-patients with essential hypertension. 2. With a mean dose of 110 mg of atenolol daily (range 75–200 mg/day) we observed a pronounced decrease in blood pressure. 3. Only minimal side effects were seen. 4. Cardiac output decreased from 4·6 to 3·4 l/min during treatment. This decrease did not correlate with the decrease in blood pressure but correlated well with the changes in calculated total peripheral resistance.


1960 ◽  
Vol 15 (6) ◽  
pp. 1065-1068 ◽  
Author(s):  
Edward J. Hershgold ◽  
Sheldon H. Steiner

Dogs were accelerated on the Wright-Patterson AFB human centrifuge in positive and transverse vectors. Cardiac output, blood pressure and heart rate were measured, and stroke volume and peripheral resistance calculated. In positive (headward) acceleration, the cardiac output and stroke volume were reduced; the peripheral resistance was increased. In the transverse vectors, the cardiac output was stable or increased; stroke volume was stable, and peripheral resistance was reduced. The results suggest that the circulatory disturbances associated with positive acceleration may limit tolerance to acceleration and that these may be avoided in transverse acceleration. Note: (With the Technical Assistance of Peter Grenell) Submitted on December 3, 1959


2019 ◽  
Vol 33 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Stefan Duschek ◽  
Alexandra Hoffmann ◽  
Casandra I. Montoro ◽  
Gustavo A. Reyes del Paso

Abstract. Chronic low blood pressure (hypotension) is accompanied by symptoms such as fatigue, reduced drive, faintness, dizziness, cold limbs, and concentration difficulties. The study explored the involvement of aberrances in autonomic cardiovascular control in the origin of this condition. In 40 hypotensive and 40 normotensive subjects, impedance cardiography, electrocardiography, and continuous blood pressure recordings were performed at rest and during stress induced by mental calculation. Parameters of cardiac sympathetic control (i.e., stroke volume, cardiac output, pre-ejection period, total peripheral resistance), parasympathetic control (i.e., heart rate variability), and baroreflex function (i.e., baroreflex sensitivity) were obtained. The hypotensive group exhibited markedly lower stroke volume, heart rate, and cardiac output, as well as higher pre-ejection period and baroreflex sensitivity than the control group. Hypotension was furthermore associated with a smaller blood pressure response during stress. No group differences arose in total peripheral resistance and heart rate variability. While reduced beta-adrenergic myocardial drive seems to constitute the principal feature of the autonomic impairment that characterizes chronic hypotension, baroreflex-related mechanisms may also contribute to this state. Insufficient organ perfusion due to reduced cardiac output and deficient cardiovascular adjustment to situational requirements may be involved in the manifestation of bodily and mental symptoms.


1962 ◽  
Vol 202 (6) ◽  
pp. 1171-1174 ◽  
Author(s):  
Theodore Cooper ◽  
Teresa Pinakatt ◽  
Max Jellinek ◽  
Alfred W. Richardson

Hyperthermia of 40.5 C was induced in anesthetized white rats by microwave exposure (2,450-Mc continuous wave, .08 w/cm2). Thermal response was accompanied by increased cardiac output, stroke volume, cardiac work, and heart rate. Blood pressure and total peripheral resistance decreased. Administration of reserpine as a single dose of 2.5 mg/kg body wt. 1 day before the experiment depleted the myocardial norepinephrine, but did not eliminate the accelerated heart rate and increase of cardiac output during hyperthermia. Hyperthermia after reserpine did not alter significantly the stroke volume and blood pressure, and the peripheral resistance decreased. These data suggest that the circulatory adaptation to microwave hyperthermia is mediated not only through the sympathetic nervous system, but by other mechanisms such as direct cardiac response to the increased tissue temperature.


1961 ◽  
Vol 201 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Irvine H. Page ◽  
Frederick Olmsted

Cardiac output, arterial pressure, heart rate and the derived functions, peripheral resistance and stroke volume, were registered continuously from intact, unanesthetized, unrestrained dogs. Isoleucyl5- or valyl5-angiotensin octapeptide caused output, heart rate and stroke volume to fall sharply when peripheral resistance rose. When infused for an hour, systolic and diastolic pressure remained elevated with unchanged infusion rate. Heart rate decreased in most animals, stroke volume and cardiac output fell, while peripheral resistance rose. Pentobarbital anesthesia increased somewhat the pressor response and decreased the bradycardia. Norepinephrine elicited, first, an abrupt rise in pressure and peripheral resistance, slight rise in heart rate and stroke volume. Arterial pressure then tended to stabilize, followed by a slow decrease associated with continued depression of cardiac output. Bradykinin caused fall in pressure, partial recovery, then further fall. Heart rate slowed, then rose. Cardiac output rose sharply during the initial fall in arterial pressure and remained elevated during the hypotensive response. Stroke volume was reduced during the initial fall but was reduced less during the rest of the response. Peripheral resistance was decreased sharply.


Sign in / Sign up

Export Citation Format

Share Document