Oxygen transport during exercise in large mammals. I. Adaptive variation in oxygen demand

1989 ◽  
Vol 67 (2) ◽  
pp. 862-870 ◽  
Author(s):  
J. H. Jones ◽  
K. E. Longworth ◽  
A. Lindholm ◽  
K. E. Conley ◽  
R. H. Karas ◽  
...  

This study investigated mechanisms used by horses and steers to increase O2 uptake and delivery (VO2) from resting to maximal rates and identified the mechanisms that enable horses to achieve higher maximal rates of O2 consumption (VO2max) than steers. VO2 and circulatory variables were measured while Standardbred trotting horses and steers (450-kg body mass) stood quietly and ran on a treadmill at speeds up to those eliciting VO2max. As VO2 increased in both species, heart rate and circulating hemoglobin (Hb) concentration increased, thereby increasing O2 delivery by the circulation, while cardiac stroke volume remained unchanged. At VO2max arterial PCO2 increased from its resting value in horses but was unchanged in steers, and arterial PO2 decreased in both species. Although the horses hypoventilated and were hypoxemic at VO2max, no significant decrease in arterial Hb saturation occurred. VO2max of the horses was 2.6 times higher than that of the steers and was associated with a 100% larger cardiac output, 100% larger stroke volume, and 40% higher Hb concentration, whereas heart rates at VO2max were identical in the two species. The higher cardiac output of the horses at VO2max resulted from a 1.2-fold higher mean arterial pressure and 1.6-fold lower peripheral tissue resistance (associated with a larger skeletal muscle capillary bed). Both the magnitude of the difference in VO2max between horses and steers and the mechanisms used to achieve it are the same as observed in smaller pairs of mammalian species with large variation in aerobic capacity.

1978 ◽  
Vol 234 (3) ◽  
pp. E248
Author(s):  
A P Shepherd

Earlier reports indicated that arterial hypoxia not only dilated intestinal resistance vessels but also increased capillary filtration coefficients. The latter finding was interpreted as reflecting an increased number of perfused capillaries. Because both increased blood flow and increased capillary density would tend to maintain tissue oxygenation in spite of arterial hypoxia, the main purpose of this paper was to determine how effectively intestinal O2 utilization is maintained during arterial hypoxia. Therefore, I perfused isolated loops of canine small bowel at constant arterial pressure. Under this condition, reducing arterial PO2 to a mean value of 46 +/- 2.4 mmHg caused blood flow to increase to 146% of control, and O2 consumption was kept within 26% of control. In gut loops perfused at constant blood flow, arterial hypoxia depressed O2 uptake still further, but measurements of 86Rb extraction confirmed that the density of the perfused capillary bed increased. Thus, the responses of both resistance and exchange vessels tend to maintain O2 delivery to intestinal tissue during arterial hypoxia.


1992 ◽  
Vol 262 (3) ◽  
pp. C766-C775 ◽  
Author(s):  
B. Chance ◽  
M. T. Dait ◽  
C. Zhang ◽  
T. Hamaoka ◽  
F. Hagerman

A simple muscle tissue spectrophotometer is adapted to measure the recovery time (TR) for hemoglobin/myoglobin (Hb/Mb) desaturation in the capillary bed of exercising muscle, termed a deoxygenation meter. The use of the instrument for measuring the extent of deoxygenation is presented, but the use of TR avoids difficulties of quantifying Hb/Mb saturation changes. The TR reflects the balance of oxygen delivery and oxygen demand in the localized muscles of the quadriceps following work near maximum voluntary contraction (MVC) in elite male and female rowers (a total of 22) on two occasions, 1 yr apart. TR ranged from 10 to 80 s and was interpreted as a measure of the time for repayment of oxygen and energy deficits accumulated during intense exercise by tissue respiration under ADP control. The Hb/Mb resaturation times provide a noninvasive localized indication of the degree of O2 delivery stress as evoked by rowing ergometry and may provide directions for localized muscle power output improvement for particular individuals in rowing competitions.


1996 ◽  
Vol 91 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Wilbert T. Jellema ◽  
Ben P. M. Imholz ◽  
Jeroen Van Goudoever ◽  
Karel H. Wesseling ◽  
Johannes J. Van Lieshout

1. The aims of this study were to determine the clinical feasibility of continuous, non-invasive Finapres recordings as a replacement for intrabrachial pressure during a 30 min head-up tilt, and the reliability of continuous cardiac output computation by pulse contour analysis from the finger arterial versus the brachial waveform. 2. In eight healthy subjects a 30 min 70° passive head-up tilt was performed. Finger arterial (FINAP) and intrabrachial (IAP) pressures were measured simultaneously. Beat-to-beat changes in stroke volume were computed using a pulse contour algorithm. 3. Accuracy (the group-averaged FINAP—IAP difference) and precision (the SD of the difference) of Finapres measurements were 4 and 9 mmHg for systolic blood pressure, −5 and 9 mmHg for mean blood pressure and −5 and 9 mmHg for diastolic blood pressure. 4. The time course of the FINAP—IAP differences during head-up tilt showed a linear trend (P < 0.001 for all pressure levels). Averaged for the group, the difference increased 7 mmHg for mean blood pressure. The difference in stroke volume computed from FINAP and IAP was 0.3 ± 5% (mean ± SD), and independent of the duration of the tilt (P > 0.05). This difference did not change at low blood pressure levels (0.5 ± 6%). 5. The qualitative performance of the Finapres allows it to be used in the clinical setting as a monitor of sudden changes in blood pressure induced by a 30 min head-up tilt. Relative changes in stroke volume, as obtained by pulse contour analysis of the finger arterial waveform, closely follow intrabrachial values during long-duration head-up tilt and associated arterial hypotension.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 265-272 ◽  
Author(s):  
T. Inoue ◽  
Y. Nakamura ◽  
Y. Adachi

A dynamic model, which predicts non-steady variations in the sediment oxygen demand (SOD) and phosphate release rate, has been designed. This theoretical model consists of three diffusion equations with biochemical reactions for dissolved oxygen (DO), phosphate and ferrous iron. According to this model, step changes in the DO concentration and flow velocity produce drastic changes in the SOD and phosphate release rate within 10 minutes. The vigorous response of the SOD and phosphate release rate is caused by the difference in the time scale of diffusion in the water boundary layer and that of the biochemical reactions in the sediment. Secondly, a negative phosphate transfer from water to sediment can even occur under aerobic conditions. This is caused by the decrease in phosphate concentration in the aerobic layer due to adsorption.


1990 ◽  
Vol 69 (3) ◽  
pp. 830-836 ◽  
Author(s):  
M. C. Hogan ◽  
D. E. Bebout ◽  
A. T. Gray ◽  
P. D. Wagner ◽  
J. B. West ◽  
...  

In the present study we investigated the effects of carboxyhemoglobinemia (HbCO) on muscle maximal O2 uptake (VO2max) during hypoxia. O2 uptake (VO2) was measured in isolated in situ canine gastrocnemius (n = 12) working maximally (isometric twitch contractions at 5 Hz for 3 min). The muscles were pump perfused at identical blood flow, arterial PO2 (PaO2) and total hemoglobin concentration [( Hb]) with blood containing either 1% (control) or 30% HbCO. In both conditions PaO2 was set at 30 Torr, which produced the same arterial O2 contents, and muscle blood flow was set at 120 ml.100 g-1.min-1, so that O2 delivery in both conditions was the same. To minimize CO diffusion into the tissues, perfusion with HbCO-containing blood was limited to the time of the contraction period. VO2max was 8.8 +/- 0.6 (SE) ml.min-1.100 g-1 (n = 12) with hypoxemia alone and was reduced by 26% to 6.5 +/- 0.4 ml.min-1.100 g-1 when HbCO was present (n = 12; P less than 0.01). In both cases, mean muscle effluent venous PO2 (PVO2) was the same (16 +/- 1 Torr). Because PaO2 and PVO2 were the same for both conditions, the mean capillary PO2 (estimate of mean O2 driving pressure) was probably not much different for the two conditions, even though the O2 dissociation curve was shifted to the left by HbCO. Consequently the blood-to-mitochondria O2 diffusive conductance was likely reduced by HbCO.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 64 (1) ◽  
pp. 404-408 ◽  
Author(s):  
M. K. Hopper ◽  
A. R. Coggan ◽  
E. F. Coyle

The effects of plasma-volume (PV) expansion on stroke volume (SV) (CO2 rebreathing) during submaximal exercise were determined. Intravenous infusion of 403 +/- 21 ml of a 6% dextran solution before exercise in the upright position increased SV 11% (i.e., 130 +/- 6 to 144 +/- 5 ml; P less than 0.05) in untrained males (n = 7). Further PV expansion (i.e., 706 +/- 43 ml) did not result in a further increase in SV (i.e., 145 +/- 4 ml). SV was somewhat higher during supine compared with upright exercise when blood volume (BV) was normal (i.e., 138 +/- 8 vs. 130 +/- 6 ml; P = 0.08). PV expansion also increased SV during exercise in the supine position (i.e., 138 +/- 8 to 150 +/- 8 ml; P less than 0.05). In contrast to these observations in untrained men, PV expansion of endurance-trained men (n = 10), who were naturally PV expanded, did not increase SV during exercise in the upright or supine positions. When BV in the untrained men was increased to match that of the endurance-trained subjects, SV was observed to be 15% higher (165 +/- 7 vs. 144 +/- 5 ml; P less than 0.05), whereas mean blood pressure and total peripheral resistance were significantly lower (P less than 0.05) in the trained compared with untrained subjects during upright exercise at a similar heart rate. The present findings indicate that exercise SV in untrained men is preload dependent and that increases in exercise SV occur in response to the first 400 ml of PV expansion. It appears that approximately one-half of the difference in SV normally observed between untrained and highly endurance-trained men during upright exercise is due to a suboptimal BV in the untrained men.


PEDIATRICS ◽  
1963 ◽  
Vol 32 (4) ◽  
pp. 660-670
Author(s):  
Jere H. Mitchell

THE mechanisms of adaptation of the left ventricle to the demands of muscular exercise have intrigued cardiovascular physiologists for many years. Although highly complex, these adaptive mechanisms are more and more susceptible to analysis and quantification. In this presentation I will attempt to identify some of the individual factors which appear to be important in the response of the left ventricle to exercise, beginning with data obtained from experiments on conscious normal male subjects and proceeding to experiments performed on dog preparations in which individual factors were controlled and analyzed. The changes in oxygen intake, cardiac output, estimated arteriovenous oxygen difference, pulse rate and estimated mean stroke volume were determined in 15 normal male subjects during rest in the standing position and during treadmill exercise at the maximal oxygen intake level. Oxygen intake was obtained from the volume and composition of expired air, cardiac output by the dye dilution technique, and pulse rate from the electrocardiogram. Estimated arteriovenous oxygen difference was obtained by dividing the oxygen intake by the cardiac output (Fick principle) and estimated mean stroke volume by dividing the cardiac output by the heart rate. The data are shown in Figure 1. Oxygen intake increased from a mean value of 0.34 at rest to a maximal value of 3.22 L./min. The corresponding mean values for cardiac output were 5.4 and 23.4 L./min. and for arteriovenous oxygen difference were 6.5 and 14.3 ml./100 ml. Thus, as oxygen intake increased 9.5 times, the cardiac output increased 4.3 times and the arterio venous oxygen difference 2.2 times.


PEDIATRICS ◽  
1985 ◽  
Vol 76 (6) ◽  
pp. 918-921
Author(s):  
Frans J. Walther ◽  
Paul Y. K. Wu ◽  
Bijan Siassi

Phototherapy is known to increase peripheral blood flow in neonates, but information on the associated cardiovascular effects is not available. Using pulsed Doppler echocardiography we evaluated cardiac output and stroke volume in 12 preterm and 13 term neonates during and after phototherapy. We concomitantly measured arterial limb blood flow by strain gauge plethysmography and skin blood flow by photoplethysmography. Cardiac output decreased by 6% due to reduced stroke volume during phototherapy, whereas total limb blood flow and skin blood flow increased by 38% and 41%, respectively. Peripheral blood flow increments tended to be higher in the preterm than in the term infants. The reduced stroke volume during phototherapy may be an expression of reduced activity of the newborn during phototherapy. For healthy neonates the reduction in cardiac output is minimal, but for sick infants with reduced cardiac output, this reduction may further aggravate the decrease in tissue perfusion.


1992 ◽  
Vol 72 (6) ◽  
pp. 2292-2297 ◽  
Author(s):  
K. C. Beck ◽  
J. Vettermann ◽  
K. Rehder

To determine the cause of the difference in gas exchange between the prone and supine postures in dogs, gas exchange was assessed by the multiple inert gas elimination technique (MIGET) and distribution of pulmonary blood flow was determined using radioactively labeled microspheres in seven anesthetized paralyzed dogs. Each animal was studied in the prone and supine positions in random order while tidal volume and respiratory frequency were kept constant with mechanical ventilation. Mean arterial PO2 was significantly lower (P less than 0.01) in the supine [96 +/- 10 (SD) Torr] than in the prone (107 +/- 6 Torr) position, whereas arterial PCO2 was constant (38 Torr). The distribution of blood flow (Q) vs. ventilation-to-perfusion ratio obtained from MIGET was significantly wider (P less than 0.01) in the supine [ln SD(Q) = 0.75 +/- 0.26] than in the prone position [ln SD (Q) = 0.34 +/- 0.05]. Right-to-left pulmonary shunting was not significantly altered. The distribution of microspheres was more heterogeneous in the supine than in the prone position. The larger heterogeneity was due in part to dorsal-to-ventral gradients in Q in the supine position that were not present in the prone position (P less than 0.01). The decreased efficiency of oxygenation in the supine posture is caused by an increased ventilation-to-perfusion mismatch that accompanies an increase in the heterogeneity of Q distribution.


Sign in / Sign up

Export Citation Format

Share Document