Dynamics of soluble gas exchange in the airways. III. Single-exhalation breathing maneuver

1993 ◽  
Vol 75 (6) ◽  
pp. 2439-2449 ◽  
Author(s):  
S. C. George ◽  
A. L. Babb ◽  
M. P. Hlastala

The exchange characteristics of a highly soluble gas with the pulmonary airways during a single-exhalation maneuver were analyzed using a mathematical model previously described by our group (M. E. Tsu et al. Ann. Biomed. Eng. 16: 547–571, 1988). The model integrates the simultaneous exchange of water, heat, and a soluble gas with the pulmonary airways. The purpose of this paper is to provide experimental data for model validation. Exhaled ethyl alcohol concentration profiles of human subjects were measured with an Intoxilyzer 5000 and were plotted against exhaled volume measured with a wedge spirometer. Each subject performed a series of breathing maneuvers in which exhalation flow rate was the only variable. Phase III has a positive slope (0.047 +/- 0.0089 mol alcohol in air.mol alcohol in alveolus-1.l-1) that is statistically independent (P > 0.05) of flow rate. Reducing the molecular diffusion coefficient of alcohol in the nonperfused tissue layer improves the fit of the model to the experimental data. The optimal diffusion coefficient of alcohol for all subjects was 12 +/- 5.3 (SD) x 10(-7) cm2/s, which is 8% of the diffusion coefficient of alcohol in water (1.6 x 10(-5) cm2/s). We concluded that the experimental data showing a positive slope of the exhaled alcohol profile are consistent with a reduced diffusivity of alcohol in the respiratory mucosa. The reduced diffusion coefficient enhances reabsorption of alcohol by the airways on exhalation and creates a positive phase III slope.

2006 ◽  
Vol 100 (3) ◽  
pp. 880-889 ◽  
Author(s):  
Joseph C. Anderson ◽  
Wayne J. E. Lamm ◽  
Michael P. Hlastala

Exhaled acetone is measured to estimate exposure or monitor diabetes and congestive heart failure. Interpreting this measurement depends critically on where acetone exchanges in the lung. Health professionals assume exhaled acetone originates from alveolar gas exchange, but experimental data and theoretical predictions suggest that acetone comes predominantly from airway gas exchange. We measured endogenous acetone in the exhaled breath to evaluate acetone exchange in the lung. The acetone concentration in the exhalate of healthy human subjects was measured dynamically with a quadrupole mass spectrometer and was plotted against exhaled volume. Each subject performed a series of breathing maneuvers in which the steady exhaled flow rate was the only variable. Acetone phase III had a positive slope (0.054 ± 0.016 liter−1) that was statistically independent of flow rate. Exhaled acetone concentration was normalized by acetone concentration in the alveolar air, as estimated by isothermal rebreathing. Acetone concentration in the rebreathed breath ranged from 0.8 to 2.0 parts per million. Normalized end-exhaled acetone concentration was dependent on flow and was 0.79 ± 0.04 and 0.85 ± 0.04 for the slow and fast exhalation rates, respectively. A mathematical model of airway and alveolar gas exchange was used to evaluate acetone transport in the lung. By doubling the connective tissue (epithelium + mucosal tissue) thickness, this model predicted accurately ( R2 = 0.94 ± 0.05) the experimentally measured expirograms and demonstrated that most acetone exchange occurred in the airways of the lung. Therefore, assays using exhaled acetone measurements need to be reevaluated because they may underestimate blood levels.


1998 ◽  
Vol 85 (2) ◽  
pp. 642-652 ◽  
Author(s):  
Nikolaos M. Tsoukias ◽  
Ziad Tannous ◽  
Archie F. Wilson ◽  
Steven C. George

Endogenous production of nitric oxide (NO) in the human lungs has many important pathophysiological roles and can be detected in the exhaled breath. An understanding of the factors that dictate the shape of the NO exhalation profile is fundamental to our understanding of normal and diseased lung function. We collected single-exhalation profiles of NO and CO2 from normal human subjects after inhalation of ambient air (∼15 parts/billion) and examined the effect of a 15-s breath hold and exhalation flow rate (V˙E) on the following features of the NO profile: 1) series dead space, 2) average concentration in phase III with respect to time and volume, 3) normalized slope of phase III with respect to time and volume, and 4) elimination rate at end exhalation. The dead space is ∼50% smaller for NO than for CO2 and is substantially reduced after a breath hold. The concentration of exhaled NO is inversely related to V˙E, but the average NO concentration with respect to time has a stronger inverse relationship than that with respect to volume. The normalized slope of phase III NO with respect to time and that with respect to volume are negative at a constantV˙E but can be made to change signs if the flow rate continuously decreases during the exhalation. In addition, NO elimination at end exhalation vs.V˙E produces a nonzero intercept and slope that are subject dependent and can be used to quantitate the relative contribution of the airways and the alveoli to exhaled NO. We conclude that exhaled NO has an airway and an alveolar source.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


1993 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
N.A. Hoenich ◽  
P.T. Smirthwaite ◽  
C. Woffindin ◽  
P. Lancaster ◽  
T.H. Frost ◽  
...  

Recirculation is an important factor in single needle dialysis and, if high, can compromise treatment efficiency. To provide information regarding recirculation characteristics of access devices used in single needle dialysis, we have developed a new technique to characterise recirculation and have used this to measure the recirculation of a Terumo 15G fistula needle and a VasCath SC2300 single lumen catheter. The experimentally obtained results agreed well with those established clinically (8.5 ± 2.4% and 18.4 ± 3.4%). The experimental results have also demonstrated a dependence on access type, pump speeds and fistula flow rate. A comparison of experimental data with theoretical predictions showed that the latter exceeded those measured with the largest contribution being due to the experimental fistula.


Author(s):  
Petya Vryashkova ◽  
Pavlin Groudev ◽  
Antoaneta Stefanova

This paper presents a comparison of MELCOR calculated results with experimental data for the QUENCH-16 experiment. The analysis for the air ingress experiment QUENCH-16 has been performed by INRNE. The calculations have been performed with MELCOR code. The QUENCH-16 experiment has been performed on 27-th of July 2011 in the frame of the EC-supported LACOMECO program. The experiments have focused on air ingress investigation into an overheated core following earlier partial oxidation in steam. QUENCH-16 has been performed with limited pre-oxidation and low air flow rate. One of the main objectives of QUENCH-16 was to examine the interaction between nitrogen and oxidized cladding during a prolonged period of oxygen starvation. The bundle is made from 20 heated fuel rod simulators arranged in two concentric rings and one unheated central fuel rod simulator, each about 2.5 m long. The tungsten heaters were surrounded by annular ZrO2 pellets to simulate the UO2 fuel. The geometry and most other bundle components are prototypical for Western-type PWRs. To improve the obtained results it has been made a series of calculations to select an appropriate initial temperature of the oxidation of the fuel bundle and modified correlation oxidation of Zircaloy with MELCOR computer code. The compared results have shown good agreement of calculated hydrogen and oxygen starvation in comparison with test data.


Author(s):  
Мурсалим Мухутдинович Гареев ◽  
Марат Иозифович Валиев ◽  
Филипп А. Карпов

Путевая деградация противотурбулентных присадок (ПТП) может стать причиной изменения основных параметров режима магистрального трубопровода - давления и расхода - относительно установившихся значений и осложнить контроль их отклонений от нормативных показателей. При этом до настоящего момента отсутствовала методика расчета режимов перекачки при использовании ПТП с учетом деградации. Авторами была поставлена цель по разработке методики для математического описания распределения давления в трубопроводе с учетом путевой деградации присадки, а также при различных концентрациях ПТП. Для достижения указанной цели предлагается дополнить уравнение баланса напоров с учетом эмпирической зависимости эффективности присадки от длины трубопровода. При расчетах давления в промежуточных точках трассы предлагается использовать данные опытно-промышленных испытаний по изменению эффективности ПТП. Для иллюстрации применения методики рассматриваются примеры перекачки нефти и нефтепродуктов с добавлением присадок в различных концентрациях. На основании экспериментальных данных получена адекватная математическая модель снижения эффективности ПТП по длине магистрального трубопровода для различных концентраций вводимой присадки. Path degradation of drug reducing agents (DRA) can cause changes in the main mode parameters of the main pipeline; pressure and flow rate, relative to the stable values, and complicate the adjustment of their deviations from the standard indicators. At the same time, up until now there has been no methodology for calculating pumping modes when using DRA that takes degradation into account. The authors set a goal to develop a methodology to mathematically describe the pressure distribution in the pipeline, taking into account the path degradation of the agent, as well as the parameters at different DRA concentrations. To achieve this goal, it is proposed to supplement the equation of the pressure head balance with the empirical dependency of agent efficiency on the length of the pipeline. When calculating the pressure at intermediate points of the route, it is proposed to use the pilot run data on the change in the DRA efficiency. To illustrate the application of the methodology, examples of pumping oil and petroleum products with added agents in various concentrations are discussed. On the basis of the experimental data, an adequate mathematical model of the DRA efficiency reduction along the length of the main pipeline for different concentrations of introduced agent was obtained.


1976 ◽  
Vol 41 (1) ◽  
pp. 115-119 ◽  
Author(s):  
M. Paiva ◽  
L. M. Lacquet ◽  
L. P. van der Linden

The anatomical data of the human lung published by Hansen and Ampaya are used in a model of gas transport in the lung. The Bohr dead space is calculated from solutions of a transport equation where diffusivity is given by an empirical formula obtained by Sherer et al. A satisfactory agreement is found with experimental data obtained from simultaneous washouts of H2 and SF6 for respiratory frequencies ranging between 15 and 60 min-1 and tidal volumes between 200 and 1,800 ml. The results support the idea that molecular diffusion is the main but not the only physical phenomenom which intervenes in gas mixing during breathing.


2017 ◽  
Vol 23 (7) ◽  
pp. 955-965 ◽  
Author(s):  
Jian WANG ◽  
Pui-Lam NG ◽  
Weishan WANG ◽  
Jinsheng DU ◽  
Jianyong SONG

Under coastal or marine conditions, chloride erosion is the major accelerating factor of reinforcement corrosion. Therefore, it is of vital importance to investigate the chloride diffusion model. Research reveals that the concrete stress state has great influence on chloride diffusion; therefore a stress influence coefficient was incorporated in chloride diffusion coefficient model by many researchers. By referring to the experimental data from eight different researchers, the law between stress influence coefficient and concrete stress ratio is studied in detail, and equations relating the stress influence coefficient with the concrete stress ratio are established. Compared with three typical existing groups of equations, it is found that the proposed equations give the most accurate estim.ation of the stress influence coefficient. Hence, the proposed equations can be adopted to improve the valuation of chloride diffusion coefficient, and a modified chloride diffusion model is put forward. Three groups of experimental data are used to validate the modified chloride diffusion model, which is shown to be reasonable and having high prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document