scholarly journals What makes long-term resistance-trained individuals so strong? A comparison of skeletal muscle morphology, architecture, and joint mechanics

2020 ◽  
Vol 128 (4) ◽  
pp. 1000-1011 ◽  
Author(s):  
Thomas M. Maden-Wilkinson ◽  
Thomas G. Balshaw ◽  
Garry J. Massey ◽  
Jonathan P. Folland

Here we demonstrate that the larger muscle strength (+60%) of a long-term (4+ yr) resistance-trained group compared with untrained controls was due to their similarly larger muscle volume (+56%), primarily due to a larger physiological cross-sectional area and modest differences in fascicle length, as well as modest differences in maximum voluntary specific tension and patella tendon moment arm. In addition, the present study refutes the possibility of regional hypertrophy, despite large differences in muscle volume.

2020 ◽  
Vol 319 (5) ◽  
pp. F885-F894
Author(s):  
Jorge L. Gamboa ◽  
Serpil Muge Deger ◽  
Bradley W. Perkins ◽  
Cindy Mambungu ◽  
Feng Sha ◽  
...  

Patients with end-stage kidney disease on maintenance hemodialysis commonly develop protein-energy wasting, a syndrome characterized by nutritional and metabolic abnormalities. Nutritional supplementation and exercise are recommended to prevent protein-energy wasting. In a 6-mo prospective randomized, open-label, clinical trial, we reported that the combination of resistance exercise and nutritional supplementation does not have an additive effect on lean body mass measured by dual-energy X-ray absorptiometry. To provide more mechanistic data, we performed a secondary analysis where we hypothesized that the combination of nutritional supplementation and resistance exercise would have additive effects on muscle protein accretion by stable isotope protein kinetic experiments, muscle mass by MRI, and mitochondrial content markers in muscle. We found that 6 mo of nutritional supplementation during hemodialysis increased muscle protein net balance [baseline: 2.5 (−17.8, 13.0) µg·100 mL−1·min−1 vs. 6 mo: 43.7 (13.0, 98.5) µg·100 mL−1·min−1, median (interquartile range), P = 0.04] and mid-thigh fat area [baseline: 162.3 (104.7, 226.6) cm2 vs. 6 mo: 181.9 (126.3, 279.2) cm2, median (interquartile range), P = 0.04]. Three months of nutritional supplementation also increased markers of mitochondrial content in muscle. Although the study is underpowered to detected differences, the combination of nutritional supplementation and exercise failed to show further benefit in protein accretion or muscle cross-sectional area. We conclude that long-term nutritional supplementation increases the skeletal muscle anabolic effect, the fat cross-sectional area of the thigh, and markers of mitochondrial content in skeletal muscle.


2021 ◽  
Vol 11 (12) ◽  
pp. 1338
Author(s):  
Sang-Pil So ◽  
Bum-Sik Lee ◽  
Ji-Wan Kim

Purpose: This study aims to determine whether the psoas volume measured from a pelvic computed tomography (CT) could be a potential opportunistic diagnostic tool to measure muscle mass and sarcopenia in patients with hip fractures. Methods: This was a retrospective cohort study. In total; 57 consecutive patients diagnosed with hip fractures who underwent surgery were enrolled. A cross-sectional area of the psoas muscle was measured at the lumbar (L) 3 and L4 vertebrae from a pelvic CT for the diagnosis of hip fractures. The psoas muscle volume was calculated with a three-dimensional modeling software program. The appendicular skeletal muscle mass (ASM) and preoperative handgrip strength (HS) were measured. The correlations between the psoas muscle volume/area and ASM/HS were assessed. Data on patient demographics; postoperative complication; length of hospital stay; and Koval scores were also recorded and analyzed with respect to the psoas muscle area/volume. Results: The psoas muscle volume and adjusted values were significantly correlated with ASM; which showed a stronger correlation than the psoas muscle area did at the L3 or L4 level. HS was correlated with the psoas volume or adjusted values; but not with the cross-sectional area of the psoas muscle. Among the adjusted values; the psoas muscle volume adjusted for the patient’s height (m2) showed a strongest correlation with ASM and HS. The psoas muscle volume was not significantly correlated with postoperative complications or short-term functional outcomes. Conclusions: The psoas muscle volume measured from a pelvic CT for the diagnosis of hip fractures showed a stronger correlation with ASM and HS than the cross-sectional area did. Therefore; the psoas muscle volume could be a potential diagnostic tool to assess the quantity of the skeletal muscle in patients with hip fractures without an additional examination.


1981 ◽  
Vol 48 (1) ◽  
pp. 35-54
Author(s):  
C.R. Shear

The effects of long-term muscle inactivity, throughout post-hatching development, have been examined. Continuous immobilization of the chicken posterior latissimus dorsi (PLD) muscle from the first hour after hatching for varying periods up to 330 days, resulted in a significantly greater decrease in myofibre size (40-64% less than control) than occurred when adult muscles were immobilized for similar periods (20-40% less than control). The myofibre atrophy resulting from long-term immobilization of adult muscle is reversible, after removal of the plaster cast. In contrast, the myofibres immobilized immediately after hatching, for similar periods of time, were unable to recover one the casts were removed. On the basis of myofibre cross-sectional area, 2 populations of cells were seen in muscles immobilized during postnatal development: small myofibres of 0.5-200 micron 2 and larger myofibres of 500–800 micron 2. The distribution of fibre cross-sectional area within immobilized adult muscles was similar to controls, suggesting a uniform response (i.e. atrophy) by all of the myofibres within the muscle. Immobilization in both newly hatched and adult PLD muscles did not appear to alter the pattern of motor endplate distribution within the muscle. Small, multiple motor endplates were observed associated with immobilized and control myofibres near their terminal ends. This finding suggests that the embryonic pattern of myofibre innervation is not entirely lost from all the fibres during postnatal development.


2007 ◽  
Vol 292 (1) ◽  
pp. C440-C451 ◽  
Author(s):  
Z. Ashley ◽  
H. Sutherland ◽  
H. Lanmüller ◽  
M. F. Russold ◽  
E. Unger ◽  
...  

Our understanding of the effects of long-term denervation on skeletal muscle is heavily influenced by an extensive literature based on the rat. We have studied physiological and morphological changes in an alternative model, the rabbit. In adult rabbits, tibialis anterior muscles were denervated unilaterally by selective section of motor branches of the common peroneal nerve and examined after 10, 36, or 51 wk. Denervation reduced muscle mass and cross-sectional area by 50–60% and tetanic force by 75%, with no apparent reduction in specific force (force per cross-sectional area of muscle fibers). The loss of mass was associated with atrophy of fast fibers and an increase in fibrous and adipose connective tissue; the diameter of slow fibers was preserved. Within fibers, electron microscopy revealed signs of ultrastructural disorganization of sarcomeres and tubular systems. This, rather than the observed transformation of fiber type from IIx to IIa, was probably responsible for the slow contractile speed of the muscles. The muscle groups denervated for 10, 36, or 51 wk showed no significant differences. At no stage was there any evidence of necrosis or regeneration, and the total number of fibers remained constant. These changes are in marked contrast to the necrotic degeneration and progressive decline in mass and force that have previously been found in long-term denervated rat muscles. The rabbit may be a better choice for a model of the effects of denervation in humans, at least up to 1 yr after lesion.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Adrien J. Létocart ◽  
Franck Mabesoone ◽  
Fabrice Charleux ◽  
Christian Couppé ◽  
René B. Svensson ◽  
...  

Abstract Background To investigate how anatomical cross-sectional area and volume of quadriceps and triceps surae muscles were affected by ageing, and by resistance training in older and younger men, in vivo. Methods The old participants were randomly assigned to moderate (O55, n = 13) or high-load (O80, n = 14) resistance training intervention (12 weeks; 3 times/week) corresponding to 55% or 80% of one repetition maximum, respectively. Young men (Y55, n = 11) were assigned to the moderate-intensity strengthening exercise program. Each group received the exact same training volume on triceps surae and quadriceps group (Reps x Sets x Intensity). The fitting polynomial regression equations for each of anatomical cross-sectional area-muscle length curves were used to calculate muscle volume (contractile content) before and after 12 weeks using magnetic resonance imaging scans. Results Only Rectus femoris and medial gastrocnemius muscle showed a higher relative anatomical cross-sectional area in the young than the elderly on the proximal end. The old group displayed a higher absolute volume of non-contractile material than young men in triceps surae (+ 96%). After training, Y55, O55 and O80 showed an increase in total quadriceps (+ 4.3%; + 6.7%; 4.2% respectively) and triceps surae (+ 2.8%; + 7.5%; 4.3% respectively) volume. O55 demonstrated a greater increase on average gains compared to Y55, while no difference between O55 and O80 was observed. Conclusions Muscle loss with aging is region-specific for some muscles and uniform for others. Equivalent strength training volume at moderate or high intensities increased muscle volume with no differences in muscle volume gains for old men. These data suggest that physical exercise at moderate intensity (55 to 60% of one repetition maximum) can reverse the aging related loss of muscle mass. Trial registration NCT03079180 in ClinicalTrials.gov. Registration date: March 14, 2017.


2010 ◽  
Vol 43 (14) ◽  
pp. 2844-2847 ◽  
Author(s):  
Norihide Sugisaki ◽  
Taku Wakahara ◽  
Naokazu Miyamoto ◽  
Koichiro Murata ◽  
Hiroaki Kanehisa ◽  
...  

2022 ◽  
pp. 110956
Author(s):  
Marcel B. Lanza ◽  
Hugo C. Martins-Costa ◽  
Carolina C. De Souza ◽  
Fernando V. Lima ◽  
Rodrigo C. Diniz ◽  
...  

2005 ◽  
Vol 61 (2) ◽  
Author(s):  
M. A. Gregory ◽  
M. N. Deane ◽  
M. Marsh

Objective: The precise mechanisms by which massage promotes repair in injured soft tissue are unknown. Various authorshave attributed the beneficial effects of massage to vasodilation and increased skin and muscle blood flow. The aim of this study was to determine whether deep transverse friction massage (DTF) causes capillary vasodilation in untraumatised skeletal muscle. Setting: Academic institution.Interventions: Twelve New Zealand white rabbits were anaesthetised and the left biceps femoris muscle received 10 minutes of DTF. Following treatment, wedge biopsies were taken from the musclewithin 10 minutes of treatment (R1 - 4), 24 hours (R5 - 8) and 6 days(R9 - 12) after treatment. To serve as controls, similar biopsies weretaken from the right biceps femoris of animals. The samples were fixed, dehydrated and embedded in epoxy resin.Transverse sections (1µm) of muscle were cut, stained with 1% aqueous alkaline toluidine blue and examined with a light microscope using a 40X objective. Images containing capillaries were captured using an image analyser with SIS software and the cross sectional diameters of at least 60 capillaries were measured from each specimen. Main Outcome Measures: Changes in capillary diameter. Results: The mean capillary diameters in control muscle averaged 4.76 µm. DTF caused a significant immediate increase of 17.3% in cross sectional area (p<0.001), which was not significantly increased by 10.0% after 24 hours (p>0.05). Six days after treatment the cross-sectional area of the treated muscle was 7.6% smaller than the controls. Conclusions: This confirms the contention that DTF stimulates muscle blood flow immediately after treatment and this may account for its beneficial effects in certain conditions. 


2013 ◽  
Vol 114 (8) ◽  
pp. 998-1008 ◽  
Author(s):  
Mette Hansen ◽  
Christian Couppe ◽  
Christina S. E. Hansen ◽  
Dorthe Skovgaard ◽  
Vuokko Kovanen ◽  
...  

Sex differences exist with regards to ligament and tendon injuries. Lower collagen synthesis has been observed in exercising women vs. men, and in users of oral contraceptives (OC) vs. nonusers, but it is unknown if OC will influence tendon biomechanics of women undergoing regular training. Thirty female athletes (handball players, 18–30 yr) were recruited: 15 long-term users of OC (7.0 ± 0.6 yr) and 15 nonusers (>5 yr). Synchronized values of patellar tendon elongation (obtained by ultrasonography) and tendon force were sampled during ramped isometric knee extensor maximum voluntary contraction to estimate mechanical tendon properties. Furthermore, tendon cross-sectional area and length were measured from MRI images, and tendon biopsies were obtained for analysis of tendon fibril characteristics and collagen cross-linking. Overall, no difference in tendon biomechanical properties, tendon fibril characteristics, or collagen cross-linking was observed between the OC users and nonusers, or between the different phases of the menstrual cycle. In athletes, tendon cross-sectional area in the preferred jumping leg tended to be larger than that in the contralateral leg ( P = 0.09), and a greater absolute ( P = 0.01) and normalized tendon stiffness ( P = 0.02), as well as a lower strain ( P = 0.04), were observed in the jumping leg compared with the contralateral leg. The results indicate that long-term OC use or menstrual phases does not influence structure or mechanical properties of the patellar tendon in female team handball athletes.


Sign in / Sign up

Export Citation Format

Share Document