Effects of disuse on growing and adult chick skeletal muscle

1981 ◽  
Vol 48 (1) ◽  
pp. 35-54
Author(s):  
C.R. Shear

The effects of long-term muscle inactivity, throughout post-hatching development, have been examined. Continuous immobilization of the chicken posterior latissimus dorsi (PLD) muscle from the first hour after hatching for varying periods up to 330 days, resulted in a significantly greater decrease in myofibre size (40-64% less than control) than occurred when adult muscles were immobilized for similar periods (20-40% less than control). The myofibre atrophy resulting from long-term immobilization of adult muscle is reversible, after removal of the plaster cast. In contrast, the myofibres immobilized immediately after hatching, for similar periods of time, were unable to recover one the casts were removed. On the basis of myofibre cross-sectional area, 2 populations of cells were seen in muscles immobilized during postnatal development: small myofibres of 0.5-200 micron 2 and larger myofibres of 500–800 micron 2. The distribution of fibre cross-sectional area within immobilized adult muscles was similar to controls, suggesting a uniform response (i.e. atrophy) by all of the myofibres within the muscle. Immobilization in both newly hatched and adult PLD muscles did not appear to alter the pattern of motor endplate distribution within the muscle. Small, multiple motor endplates were observed associated with immobilized and control myofibres near their terminal ends. This finding suggests that the embryonic pattern of myofibre innervation is not entirely lost from all the fibres during postnatal development.

2007 ◽  
Vol 292 (1) ◽  
pp. C440-C451 ◽  
Author(s):  
Z. Ashley ◽  
H. Sutherland ◽  
H. Lanmüller ◽  
M. F. Russold ◽  
E. Unger ◽  
...  

Our understanding of the effects of long-term denervation on skeletal muscle is heavily influenced by an extensive literature based on the rat. We have studied physiological and morphological changes in an alternative model, the rabbit. In adult rabbits, tibialis anterior muscles were denervated unilaterally by selective section of motor branches of the common peroneal nerve and examined after 10, 36, or 51 wk. Denervation reduced muscle mass and cross-sectional area by 50–60% and tetanic force by 75%, with no apparent reduction in specific force (force per cross-sectional area of muscle fibers). The loss of mass was associated with atrophy of fast fibers and an increase in fibrous and adipose connective tissue; the diameter of slow fibers was preserved. Within fibers, electron microscopy revealed signs of ultrastructural disorganization of sarcomeres and tubular systems. This, rather than the observed transformation of fiber type from IIx to IIa, was probably responsible for the slow contractile speed of the muscles. The muscle groups denervated for 10, 36, or 51 wk showed no significant differences. At no stage was there any evidence of necrosis or regeneration, and the total number of fibers remained constant. These changes are in marked contrast to the necrotic degeneration and progressive decline in mass and force that have previously been found in long-term denervated rat muscles. The rabbit may be a better choice for a model of the effects of denervation in humans, at least up to 1 yr after lesion.


2005 ◽  
Vol 61 (2) ◽  
Author(s):  
M. A. Gregory ◽  
M. N. Deane ◽  
M. Marsh

Objective: The precise mechanisms by which massage promotes repair in injured soft tissue are unknown. Various authorshave attributed the beneficial effects of massage to vasodilation and increased skin and muscle blood flow. The aim of this study was to determine whether deep transverse friction massage (DTF) causes capillary vasodilation in untraumatised skeletal muscle. Setting: Academic institution.Interventions: Twelve New Zealand white rabbits were anaesthetised and the left biceps femoris muscle received 10 minutes of DTF. Following treatment, wedge biopsies were taken from the musclewithin 10 minutes of treatment (R1 - 4), 24 hours (R5 - 8) and 6 days(R9 - 12) after treatment. To serve as controls, similar biopsies weretaken from the right biceps femoris of animals. The samples were fixed, dehydrated and embedded in epoxy resin.Transverse sections (1µm) of muscle were cut, stained with 1% aqueous alkaline toluidine blue and examined with a light microscope using a 40X objective. Images containing capillaries were captured using an image analyser with SIS software and the cross sectional diameters of at least 60 capillaries were measured from each specimen. Main Outcome Measures: Changes in capillary diameter. Results: The mean capillary diameters in control muscle averaged 4.76 µm. DTF caused a significant immediate increase of 17.3% in cross sectional area (p<0.001), which was not significantly increased by 10.0% after 24 hours (p>0.05). Six days after treatment the cross-sectional area of the treated muscle was 7.6% smaller than the controls. Conclusions: This confirms the contention that DTF stimulates muscle blood flow immediately after treatment and this may account for its beneficial effects in certain conditions. 


2013 ◽  
Vol 114 (8) ◽  
pp. 998-1008 ◽  
Author(s):  
Mette Hansen ◽  
Christian Couppe ◽  
Christina S. E. Hansen ◽  
Dorthe Skovgaard ◽  
Vuokko Kovanen ◽  
...  

Sex differences exist with regards to ligament and tendon injuries. Lower collagen synthesis has been observed in exercising women vs. men, and in users of oral contraceptives (OC) vs. nonusers, but it is unknown if OC will influence tendon biomechanics of women undergoing regular training. Thirty female athletes (handball players, 18–30 yr) were recruited: 15 long-term users of OC (7.0 ± 0.6 yr) and 15 nonusers (>5 yr). Synchronized values of patellar tendon elongation (obtained by ultrasonography) and tendon force were sampled during ramped isometric knee extensor maximum voluntary contraction to estimate mechanical tendon properties. Furthermore, tendon cross-sectional area and length were measured from MRI images, and tendon biopsies were obtained for analysis of tendon fibril characteristics and collagen cross-linking. Overall, no difference in tendon biomechanical properties, tendon fibril characteristics, or collagen cross-linking was observed between the OC users and nonusers, or between the different phases of the menstrual cycle. In athletes, tendon cross-sectional area in the preferred jumping leg tended to be larger than that in the contralateral leg ( P = 0.09), and a greater absolute ( P = 0.01) and normalized tendon stiffness ( P = 0.02), as well as a lower strain ( P = 0.04), were observed in the jumping leg compared with the contralateral leg. The results indicate that long-term OC use or menstrual phases does not influence structure or mechanical properties of the patellar tendon in female team handball athletes.


1993 ◽  
Vol 75 (5) ◽  
pp. 2013-2021 ◽  
Author(s):  
P. Chitano ◽  
S. B. Sigurdsson ◽  
A. J. Halayko ◽  
N. L. Stephens

To investigate heterogeneity of airway smooth muscle response, we studied strips of large and small branches from third- to sixth-generation bronchi obtained from ragweed antigen-sensitized and control dogs. The response to electrical field stimulation and carbamylcholine chloride was greater in strips from larger branches of the same generation when expressed as "tissue stress" (force per unit cross-sectional area of the whole tissue), whereas no difference emerged with use of the more appropriate "smooth muscle stress" (force per unit cross-sectional area of the muscle tissue). The response to histamine was significantly higher in small branches than in large ones, and histamine sensitivity [mean effective concentration (EC50)] was 7.79 x 10(-6) [geometric standard error of the mean (GSEM) 1.20] and 1.49 x 10(-5) M (GSEM 1.14), respectively (P < 0.01). Strips from control and sensitized animals at each site and strips from different generations did not show any significant difference. When we clustered our preparations according to dimensions, the response to histamine was significantly higher in small bronchi than in large ones and histamine EC50 was 8.95 x 10(-6) (GSEM 1.17) and 1.57 x 10(-5) M (GSEM 1.18), respectively (P < 0.05). We conclude that evaluation of muscle response in different tissues requires appropriate normalization. Furthermore, classification into generations is inadequate to study bronchial responsiveness, inasmuch as major differences originate from airway size.


2020 ◽  
Vol 319 (5) ◽  
pp. F885-F894
Author(s):  
Jorge L. Gamboa ◽  
Serpil Muge Deger ◽  
Bradley W. Perkins ◽  
Cindy Mambungu ◽  
Feng Sha ◽  
...  

Patients with end-stage kidney disease on maintenance hemodialysis commonly develop protein-energy wasting, a syndrome characterized by nutritional and metabolic abnormalities. Nutritional supplementation and exercise are recommended to prevent protein-energy wasting. In a 6-mo prospective randomized, open-label, clinical trial, we reported that the combination of resistance exercise and nutritional supplementation does not have an additive effect on lean body mass measured by dual-energy X-ray absorptiometry. To provide more mechanistic data, we performed a secondary analysis where we hypothesized that the combination of nutritional supplementation and resistance exercise would have additive effects on muscle protein accretion by stable isotope protein kinetic experiments, muscle mass by MRI, and mitochondrial content markers in muscle. We found that 6 mo of nutritional supplementation during hemodialysis increased muscle protein net balance [baseline: 2.5 (−17.8, 13.0) µg·100 mL−1·min−1 vs. 6 mo: 43.7 (13.0, 98.5) µg·100 mL−1·min−1, median (interquartile range), P = 0.04] and mid-thigh fat area [baseline: 162.3 (104.7, 226.6) cm2 vs. 6 mo: 181.9 (126.3, 279.2) cm2, median (interquartile range), P = 0.04]. Three months of nutritional supplementation also increased markers of mitochondrial content in muscle. Although the study is underpowered to detected differences, the combination of nutritional supplementation and exercise failed to show further benefit in protein accretion or muscle cross-sectional area. We conclude that long-term nutritional supplementation increases the skeletal muscle anabolic effect, the fat cross-sectional area of the thigh, and markers of mitochondrial content in skeletal muscle.


2012 ◽  
Vol 303 (6) ◽  
pp. L519-L527 ◽  
Author(s):  
Vladimir T. Basic ◽  
Elsa Tadele ◽  
Ali Ateia Elmabsout ◽  
Hongwei Yao ◽  
Irfan Rahman ◽  
...  

Cigarette smoke (CS) is a well-established risk factor in the development of chronic obstructive pulmonary disease (COPD). In contrast, the extent to which CS exposure contributes to the development of the systemic manifestations of COPD, such as skeletal muscle dysfunction and wasting, remains largely unknown. Decreased skeletal muscle capillarization has been previously reported in early stages of COPD and might play an important role in the development of COPD-associated skeletal muscle abnormalities. To investigate the effects of chronic CS exposure on skeletal muscle capillarization and exercise tolerance, a mouse model of CS exposure was used. The 129/SvJ mice were exposed to CS for 6 mo, and the expression of putative elements of the hypoxia-angiogenic signaling cascade as well as muscle capillarization were studied. Additionally, functional tests assessing exercise tolerance/endurance were performed in mice. Compared with controls, skeletal muscles from CS-exposed mice exhibited significantly enhanced expression of von Hippel-Lindau tumor suppressor (VHL), ubiquitin-conjugating enzyme E2D1 (UBE2D1), and prolyl hydroxylase-2 (PHD2). In contrast, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression was reduced. Furthermore, reduced muscle fiber cross-sectional area, decreased skeletal muscle capillarization, and reduced exercise tolerance were also observed in CS-exposed animals. Taken together, the current results provide evidence linking chronic CS exposure and induction of VHL expression in skeletal muscles leading toward impaired hypoxia-angiogenesis signal transduction, reduced muscle fiber cross-sectional area, and decreased exercise tolerance.


2012 ◽  
Vol 30 (5_suppl) ◽  
pp. 222-222 ◽  
Author(s):  
Samuel Craig Brondfield ◽  
Vivian K. Weinberg ◽  
Kathryn M. Koepfgen ◽  
Arturo Molina ◽  
Charles J. Ryan ◽  
...  

222 Background: AA, an inhibitor of androgen biosynthesis, has been shown to prolong overall survival in patients with mCRPC who have previously been treated with chemotherapy. Androgen deprivation therapy (ADT) has been shown to result in muscle wasting in prostate cancer pts. The effects of AA on progression of muscle and fat wasting have not been characterized. We evaluated whether 6 months of AA therapy altered total skeletal muscle mass or adipose mass. Methods: 10 sequential pts who responded to AA therapy for at least 6 months and had available computed tomography (CT) scans were retrospectively selected from the phase I-II COU-AA-002 study. CT image analysis was used to quantify change from baseline in total skeletal muscle and adipose tissue after 6 months of AA treatment. Skeletal muscle and adipose tissue cross-sectional area were calculated at the L3 level using Slice-O-Matic software V4.3. Previously published regression models were used to estimate fat-free mass, fat mass and skeletal muscle mass. Paired t-tests were performed to determine the change in measurements. Results: At baseline, 7 of 10 pts were overweight or obese (body mass index [BMI] > 25 kg/m2), and none were underweight. Advanced muscle wasting (sarcopenia, previously defined as the ratio of skeletal muscle cross-sectional area at L3 level to height < 52.4 cm2/m2) was present at baseline and 6 months in 9 of 10 pts. Over 6 months of AA treatment, pts lost an average of 1.9 kg ± 1.9 kg (p = 0.13). Mean changes (kg) (±standard deviation) in total skeletal muscle mass (−0.80 ± 1.71, p = 0.18) and total non-adipose mass (−1.44 ± 3.09, p = 0.17) were not significant. A significant decrease in total adipose mass (−0.61 ± 0.84, p = 0.048) was observed. Conclusions: Sarcopenia is prevalent in pts with mCRPC. AA was not related to significantly worsening sarcopenia or overall weight loss during the first 6 months of treatment; however, this may reflect a relatively short duration of therapy and/or small sample size. A significant loss of adipose tissue was observed, which is unexpected given the known effects of ADT, which increases adipose mass. Evaluation of additional AA treated patients is ongoing.


Sign in / Sign up

Export Citation Format

Share Document