Exercise alters the IGF axis in vivo and increases p53 protein in prostate tumor cells in vitro

2004 ◽  
Vol 96 (2) ◽  
pp. 450-454 ◽  
Author(s):  
Pak-Shan Leung ◽  
William J. Aronson ◽  
Tung H. Ngo ◽  
Lawrence A. Golding ◽  
R. James Barnard

Epidemiological studies report that regular physical activity can reduce the risk for prostate cancer, the most common solid-tumor cancer in US men. Regular exercise alters the serum IGF axis in vivo and reduces cell proliferation while increasing apoptosis in serum-stimulated LNCaP prostate cancer cells in vitro. The present study tests the hypothesis that these effects on tumor cell lines are mediated by enhancement of the function of the p53 gene known to arrest cell growth and induce apoptosis. When LNCaP cells were cultured in exercise serum and compared with control serum, cell growth was reduced by 27%, and there was a similar 33% decrease in proliferating cell nuclear antigen protein, a marker for cell cycling. Apoptosis was increased by 371% with the exercise serum, and there was a 100% increase in p53 protein (75.2 ± 2.0 vs. 38.2 ± 2.0 pg/μg protein). When serum was used to stimulate LN-56 cells, a cell line with nonfunctional p53 derived from LNCaP, no significant reduction in cell growth or increase in apoptosis with the exercise serum was observed. These results indicate that exercise training alters serum factors in vivo that increase cellular p53 protein content and is associated with reduced growth and induced apoptosis in LNCaP prostate cancer cells in vitro.

Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


2020 ◽  
Author(s):  
Xiang-yu Meng ◽  
Hui-zhi Zhang ◽  
Yi-yue Ren ◽  
Ke-jie Wang ◽  
Jun-feng Chen ◽  
...  

Abstract Background Pinin (PNN), a desmosome associated protein, was demonstrated to be over-expressed and act as a tumor-promoting factor in ovarian cancer, hepatocellular carcinoma and colorectal cancer. However, the precise role of PNN in prostate cancer is still unknown. Methods The expression levels of PNN were assessed in prostate cancer by qRT-PCR, western blotting and immunohistochemical staining. The other proteins were quantified by western blotting. PNN-depleted cells were produced by infecting with lentivirus bearing short hairpin RNAs against PNN. PNN over-expression was performed by transfecting PNN expression vector. The proliferation of each cell line was assessed by MTS and colony formation assays. Tumors were induced on nude mice by injecting tumor cells subcutaneously. Apoptosis and cell cycle were evaluated by flow cytometry. Transwell and wound healing assay were performed to determined the ability of cell invasion and migration. The TCGA data were analyzed with GEPIA (Gene Expression Profiling Interactive Analysis) and GraphPad Prism. Results Here, we reported that PNN was upregulated in prostate cancer tissues and PNN expression was positively associated with Gleason score, tumor stage and tumor metastasis. PNN promoted cell growth and tumorigenicity in vitro and in vivo, and might modulate cell growth through driving G1/S transition via CDK6, CDK2, and Cyclin D1 in prostate cancer cells. Furthermore, PNN accelerated cell invasion, migration and EMT processes of prostate cancer cells accompanied with the up-regulation of MMP-2, MMP-9, N-cadherin, Vimentin and down-regulation of E-cadherin. Mechanism study demonstrated that the proliferation- and motility-promoting effects of PNN on prostate cancer cells dependent on the activation of PI3K/AKT/CREB signaling, which was reversed by AKT and CREB inhibitors. Conclusions Collectively, these findings indicated that PNN plays important roles in prostate cancer tumorigenesis and progression and it may be a potential therapeutic target for prostate cancer treatment.


2010 ◽  
Vol 32 (1-2) ◽  
pp. 11-27
Author(s):  
Mari Kaarbø ◽  
Øyvind Løveseter Mikkelsen ◽  
Lene Malerød ◽  
Su Qu ◽  
Viola H. Lobert ◽  
...  

Background: Androgen receptor (AR) and the phosphatidylinositol-3 kinase (PI3K) signaling are two of the most important pathways implicated in prostate cancer. Previous work has shown that there is crosstalk between these two pathways; however, there are conflicting findings and the molecular mechanisms are not clear. Here we studied the AR–PI3K pathway crosstalk in prostate cancer cells in vitro as well as in vivo.Methods: Quantitative PCR, Western analysis, reporter assays, and proliferation analyses in vitro and in vivo were used to evaluate the effect of PI3K pathway inhibition on AR signaling and cell growth.Results: Transcriptional activity of AR was increased when the PI3K pathway was inhibited at different levels. In the androgen responsive prostate cancer cell line LNCaP, androgen and the mTOR inhibitor rapamycin synergistically activated androgen target genes. Despite increased androgen signaling, rapamycin treatment reduced LNCaP cell growth; the AR antagonist bicalutamide potentiated this effect. Furthermore, the rapamycin derivative CCI-779 reduced the growth of CWR22 prostate cancer xenografts while increasing AR target gene expression.Conclusions: These findings suggest that inhibition of the PI3K pathway activates AR signaling. Despite the increase in AR signaling which has proliferative effects, the result of PI3K pathway inhibition is antiproliferative. These findings suggest that the PI3K pathway is dominant over AR signaling in prostate cancer cells which should be considered in developing novel therapeutic strategies for prostate cancer.


2004 ◽  
Vol 18 (10) ◽  
pp. 2388-2401 ◽  
Author(s):  
David Masiello ◽  
Shao-Yong Chen ◽  
Youyuan Xu ◽  
Manon C. Verhoeven ◽  
Eunis Choi ◽  
...  

Abstract Prostate cancers respond to treatments that suppress androgen receptor (AR) function, with bicalutamide, flutamide, and cyproterone acetate (CPA) being AR antagonists in clinical use. As CPA has substantial agonist activity, it was examined to identify AR coactivator/corepressor interactions that may mediate androgen-stimulated prostate cancer growth. The CPA-liganded AR was coactivated by steroid receptor coactivator-1 (SRC-1) but did not mediate N-C terminal interactions or recruit β-catenin, indicating a nonagonist conformation. Nonetheless, CPA did not enhance AR interaction with nuclear receptor corepressor, whereas the AR antagonist RU486 (mifepristone) strongly stimulated AR-nuclear receptor corepressor binding. The role of coactivators was further assessed with a T877A AR mutation, found in LNCaP prostate cancer cells, which converts hydroxyflutamide (HF, the active flutamide metabolite) into an agonist that stimulates LNCaP cell growth. The HF and CPA-liganded T877A ARs were coactivated by SRC-1, but only the HF-liganded T877A AR was coactivated by β-catenin. L-39, a novel AR antagonist that transcriptionally activates the T877A AR, but still inhibits LNCaP growth, similarly mediated recruitment of SRC-1 and not β-catenin. In contrast, β-catenin coactivated a bicalutamide-responsive mutant AR (W741C) isolated from a bicalutamide-stimulated LNCaP subline, further implicating β-catenin recruitment in AR-stimulated growth. Androgen-stimulated prostate-specific antigen gene expression in LNCaP cells could be modulated by β-catenin, and endogenous c-myc expression was repressed by dihydrotestosterone, but not CPA. These results indicate that interactions between AR and β-catenin contribute to prostate cell growth in vivo, although specific growth promoting genes positively regulated by AR recruitment of β-catenin remain to be identified.


Sign in / Sign up

Export Citation Format

Share Document