scholarly journals Metabolic imaging in exercise physiology

2018 ◽  
Vol 124 (2) ◽  
pp. 497-503 ◽  
Author(s):  
Thorsten Rudroff ◽  
Nathaniel B. Ketelhut ◽  
John H. Kindred

This minireview focuses on selected, noninvasive imaging techniques that have been used in the study of exercise physiology. These imaging modalities can be roughly divided into two categories: tracer based and nontracer based. Tracer-based methods use radiolabeled substrates whose location and quantity can subsequently be imaged once they are incorporated into metabolic processes. Nontracer-based imaging modalities rely on specific properties of substrates to identify metabolites and determine their concentrations. Identification and quantification of metabolites is usually based on magnetic properties or on differences in light absorption. In this review, we will highlight two tracer-based imaging modalities, positron emission tomography and single-photon-emission computed tomography, as well as two nontracer-based methods, magnetic resonance spectroscopy and near-infrared spectroscopy. Some of the recent findings that each technique has provided on cerebral and skeletal muscle metabolism during exercise, as well as the strengths and limitations of each technique, will be discussed.

2018 ◽  
Vol 124 (1) ◽  
pp. 168-181 ◽  
Author(s):  
Tineke van de Weijer ◽  
Elisabeth H. M. Paiman ◽  
Hildo J. Lamb

In this review, current imaging techniques and their future perspectives in the field of cardiac metabolic imaging in humans are discussed. This includes a range of noninvasive imaging techniques, allowing a detailed investigation of cardiac metabolism in health and disease. The main imaging modalities discussed are magnetic resonance spectroscopy techniques for determination of metabolite content (triglycerides, glucose, ATP, phosphocreatine, and so on), MRI for myocardial perfusion, and single-photon emission computed tomography and positron emission tomography for quantitation of perfusion and substrate uptake.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Uliana Kostiv ◽  
Jan Kučka ◽  
Volodymyr Lobaz ◽  
Nikolay Kotov ◽  
Olga Janoušková ◽  
...  

Abstract“All-in-one” multifunctional nanomaterials, which can be visualized simultaneously by several imaging techniques, are required for the efficient diagnosis and treatment of many serious diseases. This report addresses the design and synthesis of upconversion magnetic NaGdF4:Yb3+/Er3+(Tm3+) nanoparticles by an oleic acid-stabilized high-temperature coprecipitation of lanthanide precursors in octadec-1-ene. The nanoparticles, which emit visible or UV light under near-infrared (NIR) irradiation, were modified by in-house synthesized PEG-neridronate to facilitate their dispersibility and colloidal stability in water and bioanalytically relevant phosphate buffered saline (PBS). The cytotoxicity of the nanoparticles was determined using HeLa cells and human fibroblasts (HF). Subsequently, the particles were modified by Bolton-Hunter-neridronate and radiolabeled by 125I to monitor their biodistribution in mice using single-photon emission computed tomography (SPECT). The upconversion and the paramagnetic properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles were evaluated by photoluminescence, magnetic resonance (MR) relaxometry, and magnetic resonance imaging (MRI) with 1 T and 4.7 T preclinical scanners. MRI data were obtained on phantoms with different particle concentrations and during pilot long-time in vivo observations of a mouse model. The biological and physicochemical properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles make them promising as a trimodal optical/MRI/SPECT bioimaging and theranostic nanoprobe for experimental medicine.


2011 ◽  
Vol 13 (2) ◽  
pp. 225-234 ◽  

Biomarkers have been receiving increasing attention, especially in the field of psychiatry In contrast to the availability of potent therapeutic tools including pharmacotherapy, psychotherapy, and biological therapies, unmet needs remain in terms of onset of action, stability of response, and further improvement of the clinical course. Biomarkers are objectively measured characteristics which serve as indicators of the causes of illnesses, their clinical course, and modification by treatment. There exist a variety of markers: laboratory markers which comprise the determination of genetic and epigenetic markers, neurotransmitters, hormones, cytokines, neuropeptides, enzymes, and others as single measures; electrophysiological markers which usually comprise electroencephalography (EEG) measures, and in particular sleep EEG and evoked potentials, magnetic encephalography, electrocardiogram, facial electromyography, skin conductance, and others; brain imaging techniques such as cranial computed tomography, magnetic resonance imaging, functional MRI, magnetic resonance spectroscopy, positron emission tomography, and single photon emission computed tomography; and behavioral approaches such as cue exposure and challenge tests which can be used to induce especially emotional processes in anxiety and depression. Examples for each of these domains are provided in this review. With a view to developing more individually tailored therapeutic strategies, the characterization of patients and the courses of different types of treatment will become even more important in the future.


Author(s):  
Malgorzata Solnik ◽  
Natalia Paduszynska ◽  
Anna M. Czarnecka ◽  
Kamil J. Synoradzki ◽  
Yacoub A. Yousef ◽  
...  

Uveal melanoma is the most common primary intraocular malignancy in adults characterized by insidious onset and poor prognosis strongly associated with tumor size and the presence of distant metastases, most commonly in the liver. Contrary to most tumor identification, biopsy followed by pathological exam is not recommended in ophthalmic oncology. Therefore, early and non-invasive diagnosis is essential to enhance patients’ chances for early treatment possibilities. We reviewed imaging modalities currently used in the diagnosis of uveal melanoma, i.e., fundus imaging, ultrasonography (US), optical coherence tomography (OCT), single-photon emission computed tomography (SPECT), positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI), fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), fundus autofluorescence (FAF). The principle of imaging techniques was briefly explained, along with their role in the diagnostic process and a summary of their advantages and limitations. Further, the experimental data and the advancements in imaging modalities were searched. We described their innovations, showed current usage and research, and explained the possibilities of utilizing them to diagnose uveal melanoma and their potential application in personalized medicine such as theranostics.


2016 ◽  
Vol 2 (1) ◽  
pp. 27 ◽  
Author(s):  
Josep L Melero-Ferrer ◽  
Raquel López-Vilella ◽  
Herminio Morillas-Climent ◽  
Jorge Sanz-Sánchez ◽  
Ignacio J Sánchez-Lázaro ◽  
...  

Imaging techniques play a main role in heart failure (HF) diagnosis, assessment of aetiology and treatment guidance. Echocardiography is the method of choice for its availability, cost and it provides most of the information required for the management and follow up of HF patients. Other non-invasive cardiac imaging modalities, such as cardiovascular magnetic resonance (CMR), nuclear imaging-positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and computed tomography (CT) could provide additional aetiological, prognostic and therapeutic information, especially in selected populations. This article reviews current indications and possible future applications of imaging modalities to improve the management of HF patients.


2018 ◽  
Vol 24 (22) ◽  
pp. 2515-2523 ◽  
Author(s):  
Tianbin Song ◽  
Xiaowei Han ◽  
Lei Du ◽  
Jing Che ◽  
Jing Liu ◽  
...  

Depression is a mental disorder with serious negative health outcomes. Its main clinical manifestations are depressed mood, slow thinking, loss of interest, and lack of energy. The rising incidence of depression has a major impact on patients and their families and imposes a substantial burden on society. With the rapid development of imaging technology in recent years, researchers have studied depression from different perspectives, including molecular, functional, and structural imaging. Many studies have revealed changes in structure, function, and metabolism in various brain regions in patients with depressive disorder. In this review, we summarize relevant studies of depression, including investigations using structural magnetic resonance imaging (MRI), functional MRI (task-state fMRI and resting-state fMRI), diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), brain network and molecular imaging (positron emission tomography [PET] and single photon emission computed tomography [SPECT]), which have contributed to our understanding of the etiology, neuropathology, and pathogenesis of depressive disorder.


2021 ◽  
Vol 14 (5) ◽  
pp. 385
Author(s):  
Leonardo L. Fuscaldi ◽  
Danielle V. Sobral ◽  
Ana Claudia R. Durante ◽  
Fernanda F. Mendonça ◽  
Ana Cláudia C. Miranda ◽  
...  

Prostate-specific membrane antigen (PSMA) is a glycoprotein present in the prostate, that is overexpressed in prostate cancer (PCa). Recently, PSMA-directed radiopharmaceuticals have been developed, allowing the pinpointing of tumors with the Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) imaging techniques. The aim of the present work was to standardize and validate an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11, as well as to produce a radiopharmaceutical for PET imaging of PCa malignancies. [68Ga]Ga-PSMA-11 was evaluated to determine the radiochemical purity (RCP), stability in saline solution and serum, lipophilicity, affinity to serum proteins, binding and internalization to lymph node carcinoma of the prostate (LNCaP) cells, and ex vivo biodistribution in mice. The radiopharmaceutical was produced with an RCP of 99.06 ± 0.10%, which was assessed with reversed-phase high-performance liquid chromatography (RP-HPLC). The product was stable in saline solution for up to 4 h (RCP > 98%) and in serum for up to 1 h (RCP > 95%). The lipophilicity was determined as −3.80 ± 0.15, while the serum protein binding (SPB) was <17%. The percentages of binding to LNCaP cells were 4.07 ± 0.51% (30 min) and 4.56 ± 0.46% (60 min), while 19.22 ± 2.73% (30 min) and 16.85 ± 1.34% (60 min) of bound material was internalized. High accumulation of [68Ga]Ga-PSMA-11 was observed in the kidneys, spleen, and tumor, with a tumor-to-contralateral-muscle ratio of >8.5 and a tumor-to-blood ratio of >3.5. In conclusion, an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11 was standardized and the product was evaluated, thus verifying its characteristics for PET imaging of PCa tumors in a clinical environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tae Jung Kim ◽  
Jae-Myoung Kim ◽  
Soo-Hyun Park ◽  
Jong-Kwan Choi ◽  
Hyeon-Min Bae ◽  
...  

AbstractInadequate cerebral perfusion is a risk factor for cerebral ischemia in patients with large artery steno-occlusion. We investigated whether prefrontal oxyhemoglobin oscillation (ΔHbO2, 0.6–2 Hz) was associated with decreased vascular reserve in patients with steno-occlusion in the large anterior circulation arteries. Thirty-six patients with steno-occlusion in the anterior circulation arteries (anterior cerebral artery, middle cerebral artery, and internal carotid artery) were included and compared to thirty-six control subjects. Patients were categorized into two groups (deteriorated vascular reserve vs. preserved vascular reserve) based on the results of Diamox single- photon emission computed tomography imaging. HbO2 data were collected using functional near-infrared spectroscopy. The slope of ΔHbO2 and the ipsilateral/contralateral slope ratio of ΔHbO2 were analyzed. Among the included patients (n = 36), 25 (69.4%) had deteriorated vascular reserve. Patients with deteriorated vascular reserve had a significantly higher average slope of ΔHbO2 on the ipsilateral side (5.01 ± 2.14) and a higher ipsilateral/contralateral ratio (1.44 ± 0.62) compared to those with preserved vascular reserve (3.17 ± 1.36, P = 0.014; 0.93 ± 0.33, P = 0.016, respectively) or the controls (3.82 ± 1.69, P = 0.019; 0.94 ± 0.29, P = 0.001). The ipsilateral/contralateral ΔHbO2 ratio could be used as a surrogate for vascular reserve in patients with severe steno-occlusion in the anterior circulation arteries.


2021 ◽  
Vol 22 (9) ◽  
pp. 4804
Author(s):  
Vincent Q. Sier ◽  
Joost R. van der Vorst ◽  
Paul H. A. Quax ◽  
Margreet R. de Vries ◽  
Elham Zonoobi ◽  
...  

Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-β (TGF-β) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: “Endoglin”, “Imaging/Image-guided surgery”. In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.


Doctor Ru ◽  
2020 ◽  
Vol 19 (9) ◽  
pp. 6-12
Author(s):  
M.R. Sapronova ◽  
◽  
D.V. Dmitrenko ◽  
N.A. Schnaider ◽  
A.A. Molgachev ◽  
...  

Objective of the Review: To describe available functional neuroimaging techniques for use in patients with Parkinson’s disease (PD). Key Points: Parkinson’s disease is a neurodegenerative disorder which affects 2-3% of people older than 65 years. The main neuropathological hallmarks of PD are an accumulation of alpha-synuclein aggregates in the cellular cytoplasm and a loss of neurons in the pars compacta of the substantia nigra, leading to dopamine deficiency. Clinical symptoms of the disease appear when the underlying neural impairment is already advanced, which significantly reduces treatment options. Over the two last decades, functional neuroimaging techniques such as positron emission tomography, single-photon emission computed tomography, proton magnetic resonance spectroscopy, and transcranial sonography have increasingly been used for diagnosing PD during patients’ lifetime and understanding the neuropathological mechanisms and compensatory reactions underlying its symptoms, as well as for monitoring the progression of PD. Conclusion: Modern functional neuroimaging techniques not only facilitate differential diagnosis of PD, but also make it possible to detect the disease at its early/preclinical stage. Keywords: Parkinson’s disease, neuroimaging, positron emission tomography, single-photon emission computed tomography, proton magnetic resonance spectroscopy, transcranial sonography.


Sign in / Sign up

Export Citation Format

Share Document