Regional differences in effects of exercise training on contractile and biochemical properties of rat cardiac myocytes

2003 ◽  
Vol 95 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Gary M. Diffee ◽  
Daniel F. Nagle

Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. A number of studies have shown that the characteristics of cardiac myocytes vary across the width of the ventricular wall. We have previously shown that endurance exercise training alters the Ca2+ sensitivity of tension as well as contractile protein isoform expression in rat cardiac myocytes. We tested the hypothesis that these effects of training are not uniform across the ventricular wall but are more pronounced in the subendocardial (Endo) region of the myocardium. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise trained (T) groups. T rats underwent 11 wk of progressive treadmill exercise. Myocytes were isolated from the Endo region of the myocardium and from the subepicardial (Epi) region of both T and C hearts. We found an increase in the Ca2+ sensitivity of tension in T cells compared with C cells, but this difference was larger in the Endo cells than in the Epi cells. In addition, we found a training-induced increase in atrial myosin light chain 1 (aMLC1) expression that was larger in the Endo compared with Epi samples. We conclude that effects of exercise training on myocyte contractile and biochemical properties are greater in myocytes from the Endo region of the myocardium than those from the Epi region. In addition, these results provide evidence that the increase in aMLC1 expression may be responsible for some of the training-induced increase in myocyte Ca2+ sensitivity of tension.

1998 ◽  
Vol 275 (5) ◽  
pp. R1468-R1477 ◽  
Author(s):  
Scott K. Powers ◽  
Haydar A. Demirel ◽  
Heather K. Vincent ◽  
Jeff S. Coombes ◽  
Hisashi Naito ◽  
...  

Experimental studies examining the effects of regular exercise on cardiac responses to ischemia and reperfusion (I/R) are limited. Therefore, these experiments examined the effects of endurance exercise training on myocardial biochemical and physiological responses during in vivo I/R. Female Sprague-Dawley rats (4 mo old) were randomly assigned to either a sedentary control group or to an exercise training group. After a 10-wk endurance exercise training program, animals were anesthetized and mechanically ventilated, and the chest was opened by thoracotomy. Coronary occlusion was achieved by a ligature around the left coronary artery; occlusion was maintained for 20 min, followed by a 10-min period of reperfusion. Compared with untrained, exercise-trained animals maintained higher ( P < 0.05) peak systolic blood pressure throughout I/R. Training resulted in a significant ( P < 0.05) increase in ventricular nonprotein thiols, heat shock protein (HSP) 72, and the activities of superoxide dismutase (SOD), phosphofructokinase (PFK), and lactate dehydrogenase. Furthermore, compared with untrained controls, left ventricles from trained animals exhibited lower levels ( P < 0.05) of lipid peroxidation after I/R. These data demonstrate that endurance exercise training improves myocardial contractile performance and reduces lipid peroxidation during I/R in the rat in vivo. It appears likely that the improvement in the myocardial responses to I/R was related to training-induced increases in nonprotein thiols, HSP72, and the activities of SOD and PFK in the myocardium.


2017 ◽  
Vol 123 (2) ◽  
pp. 460-472 ◽  
Author(s):  
Scott K. Powers

Endurance exercise training promotes numerous cellular adaptations in both cardiac myocytes and skeletal muscle fibers. For example, exercise training fosters changes in mitochondrial function due to increased mitochondrial protein expression and accelerated mitochondrial turnover. Additionally, endurance exercise training alters the abundance of numerous cytosolic and mitochondrial proteins in both cardiac and skeletal muscle myocytes, resulting in a protective phenotype in the active fibers; this exercise-induced protection of cardiac and skeletal muscle fibers is often referred to as “exercise preconditioning.” As few as 3–5 consecutive days of endurance exercise training result in a preconditioned cardiac phenotype that is sheltered against ischemia-reperfusion-induced injury. Similarly, endurance exercise training results in preconditioned skeletal muscle fibers that are resistant to a variety of stresses (e.g., heat stress, exercise-induced oxidative stress, and inactivity-induced atrophy). Many studies have probed the mechanisms responsible for exercise-induced preconditioning of cardiac and skeletal muscle fibers; these studies are important, because they provide an improved understanding of the biochemical mechanisms responsible for exercise-induced preconditioning, which has the potential to lead to innovative pharmacological therapies aimed at minimizing stress-induced injury to cardiac and skeletal muscle. This review summarizes the development of exercise-induced protection of cardiac myocytes and skeletal muscle fibers and highlights the putative mechanisms responsible for exercise-induced protection in the heart and skeletal muscles.


2003 ◽  
Vol 94 (3) ◽  
pp. 1137-1144 ◽  
Author(s):  
Gary M. Diffee ◽  
Daniel F. Nagle

Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. Exercise training increases the sensitivity of rat cardiac myocytes to activation by Ca2+, and this Ca2+ sensitivity has been shown to be highly dependent on sarcomere length. We tested the hypothesis that exercise training increases this length dependence in cardiac myocytes. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise. Heart weight increased by 14% in T compared with C rats, and plantaris muscle citrate synthase activity showed a 39% increase with training. Steady-state tension was determined in permeabilized myocytes by using solutions of various Ca2+concentration (pCa), and tension-pCa curves were generated at two different sarcomere lengths for each myocyte (1.9 and 2.3 μm). We found an increased sarcomere length dependence of both maximal tension and pCa50 (the Ca2+ concentration giving 50% of maximal tension) in T compared with C myocytes. The ΔpCa50 between the long and short sarcomere length was 0.084 ± 0.023 (mean ± SD) in myocytes from C hearts compared with 0.132 ± 0.014 in myocytes from T hearts ( n = 50 myocytes per group). The Δmaximal tension was 5.11 ± 1.42 kN/m2 in C myocytes and 9.01 ± 1.28 in T myocytes. We conclude that exercise training increases the length dependence of maximal and submaximal tension in cardiac myocytes, and this change may underlie, at least in part, training-induced enhancement of myocardial function.


2001 ◽  
Vol 91 (1) ◽  
pp. 309-315 ◽  
Author(s):  
Gary M. Diffee ◽  
Eric A. Seversen ◽  
Marci M. Titus

The heart is known to respond to a program of chronic exercise in ways that enhance cardiac function. However, the cellular mechanisms involved in training-induced improvements in the contractile function of the myocardium are not known. In this study we tested the hypothesis that increased contractility of the myocardium associated with exercise training is due, in part, to increases in the Ca2+ sensitivity of steady-state tension. Female Sprague-Dawley rats were randomly divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise (1 h/day, 5 days/wk, 26 m/min, 20% grade). Evidence of training effect included a 5.9% increase in heart mass, increases in heart weight-to-body weight ratio, and a 60% increase in skeletal muscle citrate synthase activity in T rats compared with C rats. After the training program, cardiac myocytes were isolated from T and C hearts. Myocytes were chemically skinned (i.e., the sarcolemma was removed) and attached to a force transducer, and steady-state tension was determined in solutions of various Ca2+ concentrations ([Ca2+]). Myocytes isolated from the hearts of T rats showed a significantly ( P < 0.01) increased sensitivity of tension to [Ca2+]. The [Ca2+] giving 50% of maximal tension (pCa50) was 5.90 ± 0.033 and 5.82 ± 0.023 (SD) in T and C myocytes, respectively ( n = 70 myocytes/group). This result suggests that exercise training affects the myofibrillar proteins, such that Ca2+ sensitivity is increased, and that this may be the mechanism that underlies, at least in part, the effect of training to increase myocardial contractility.


2021 ◽  
Vol 22 (15) ◽  
pp. 8203
Author(s):  
Suryun Jung ◽  
Youjeong Kim ◽  
Mingyu Kim ◽  
Minjae Seo ◽  
Suji Kim ◽  
...  

Physical exercise reduces the extent, duration, and frequency of drug use in drug addicts during the drug initiation phase, as well as during prolonged addiction, withdrawal, and recurrence. However, information about exercise-induced neurobiological changes is limited. This study aimed to investigate the effects of forced moderate endurance exercise training on methamphetamine (METH)-induced behavior and the associated neurobiological changes. Male Sprague Dawley rats were subjected to the administration of METH (1 mg/kg/day, i.p.) and/or forced moderate endurance exercise (treadmill running, 21 m/min, 60 min/day) for 2 weeks. Over the two weeks, endurance exercise training significantly reduced METH-induced hyperactivity. METH and/or exercise treatment increased striatal dopamine (DA) levels, decreased p(Thr308)-Akt expression, and increased p(Tyr216)-GSK-3β expression. However, the phosphorylation levels of Ser9-GSK-3β were significantly increased in the exercise group. METH administration significantly increased the expression of NMDAr1, CaMKK2, MAPKs, and PP1 in the striatum, and exercise treatment significantly decreased the expression of these molecules. Therefore, it is apparent that endurance exercise inhibited the METH-induced hyperactivity due to the decrease in GSK-3β activation by the regulation of the striatal glutamate signaling pathway.


2012 ◽  
Vol 112 (3) ◽  
pp. 501-510 ◽  
Author(s):  
Ashley J. Smuder ◽  
Kisuk Min ◽  
Matthew B. Hudson ◽  
Andreas N. Kavazis ◽  
Oh-Sung Kwon ◽  
...  

Controlled mechanical ventilation (MV) is a life-saving measure for patients in respiratory failure. However, MV renders the diaphragm inactive leading to diaphragm weakness due to both atrophy and contractile dysfunction. It is now established that oxidative stress is a requirement for MV-induced diaphragmatic proteolysis, atrophy, and contractile dysfunction to occur. Given that endurance exercise can elevate diaphragmatic antioxidant capacity and the levels of the cellular stress protein heat shock protein 72 (HSP72), we hypothesized that endurance exercise training before MV would protect the diaphragm against MV-induced oxidative stress, atrophy, and contractile dysfunction in female Sprague-Dawley rats. Our results confirm that endurance exercise training before MV increased both HSP72 and the antioxidant capacity in the diaphragm. Importantly, compared with sedentary animals, exercise training before MV protected the diaphragm against MV-induced oxidative damage, protease activation, myofiber atrophy, and contractile dysfunction. Further, exercise protected diaphragm mitochondria against MV-induced oxidative damage and uncoupling of oxidative phosphorylation. These results provide the first evidence that exercise can provide protection against MV-induced diaphragm weakness. These findings are important and establish the need for future experiments to determine the mechanism(s) responsible for exercise-induced diaphragm protection.


1998 ◽  
Vol 76 (9) ◽  
pp. 891-894 ◽  
Author(s):  
P D Chilibeck ◽  
G J Bell ◽  
R P Farrar ◽  
T P Martin

It has been well documented that skeletal muscle fatty acid oxidation can be elevated by continuous endurance exercise training. However, it remains questionable whether similar adaptations can be induced with intermittent interval exercise training. This study was undertaken to directly compare the rates of fatty acid oxidation in isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria following these different exercise training regimes. Mitochondria were isolated from the gastrocnemius-plantaris muscles of male Sprague-Dawley rats following exercise training 6 days per week for 12 weeks. Exercise training consisted of either continuous, submaximal, endurance treadmill running (n = 10) or intermittent, high intensity, interval running (n = 10). Both modes of training enhanced the oxidation of palmityl-carnitine-malate in both mitochondrial populations (p < 0.05). However, the increase associated with the intermittent, high intensity exercise training was significantly greater than that achieved with the continuous exercise training (p < 0.05). Also, the increases associated with the IMF mitochondria were greater than the SS mitochondria (p < 0.05). These data suggest that high intensity, intermittent interval exercise training is more effective for stimulation of fatty acid oxidation than continuous submaximal exercise training and that this adaptation occurs preferentially within IMF mitochondria.Key words: muscle, subsarcolemmal mitochondria, intermyofibrillar mitochondria.


Sign in / Sign up

Export Citation Format

Share Document