scholarly journals Delayed recovery of velocity-dependent power loss following eccentric actions of the ankle dorsiflexors

2010 ◽  
Vol 109 (3) ◽  
pp. 669-676 ◽  
Author(s):  
Geoffrey A. Power ◽  
Brian H. Dalton ◽  
Charles L. Rice ◽  
Anthony A. Vandervoort

Unaccustomed eccentric exercise has been shown to impair muscle function, although little is known regarding this impairment on muscle power. The purpose of this study was to investigate changes in neuromuscular properties of the ankle dorsiflexors during and after an eccentric contraction task and throughout recovery in 21 (10 men, 11 women) recreationally active young adults (25.8 ± 2.3 yr). All subjects performed 5 sets of 30 eccentric contractions at 80% of maximum isometric voluntary contraction (MVC) torque. Data were recorded at baseline, during the fatigue task, and for 30 min of recovery. There were no significant sex differences for all fatigue measures; thus data were pooled. After the fatigue task, MVC torque declined by 28% ( P < 0.05) and did not recover fully, and voluntary activation of the dorsiflexors, as assessed by the interpolated twitch technique, was near maximal (>99%) during and after the fatigue task ( P > 0.05). Peak twitch torque was reduced by 21% at 2 min of recovery and progressively decreased to 35% by 30 min ( P < 0.05). Low-frequency torque depression (10-to-50 Hz ratio) was present at 30 s of recovery, increased to 51% by 10 min, and did not recover fully ( P < 0.05). Velocity-dependent concentric power was reduced by 8% immediately after task termination and did not recover fully within 30 min ( P < 0.05). The main findings of an incomplete recovery of MVC torque, low-frequency torque depression, and shortening velocity indicate the presence of muscle damage, which may have altered excitation-contraction coupling and cross-bridge kinetics and reduced the number of functional sarcomeres in series, ultimately leading to velocity-dependent power loss.

2012 ◽  
Vol 113 (2) ◽  
pp. 255-262 ◽  
Author(s):  
M. J. Berger ◽  
C. A. McKenzie ◽  
D. G. Chess ◽  
A. Goela ◽  
T. J. Doherty

The purposes of this study were to determine 1) the relationships of self-reported function scores in patients with knee osteoarthritis (OA) to both maximal isometric torque and to isotonic power at a variety of loads, and 2) the degree to which muscle volume (MV) or voluntary activation (VA) are associated with torque and power measures in this population. Isometric maximal voluntary contraction (MVC) torque and isotonic power [performed at loads corresponding to 10, 20, 30, 40, and 50% MVC, and a minimal load (“Zero Load”)] were measured in 40 participants with knee OA. Functional ability was measured with the Western Ontario and McMaster Osteoarthritis Index (WOMAC) function subscale. MV was determined with magnetic resonance imaging, and VA was measured with the interpolated twitch technique. In general, power measured at lower loads (Zero Load and 10–30% MVC, r2= 0.21–0.28, P < 0.05) predicted a greater proportion of the variance in function than MVC torque ( r2= 0.18, P < 0.05), with power measured at Zero Load showing the strongest association ( r2= 0. 28, P < 0.05). MV was the strongest predictor of MVC torque and power measures in multiple regression models ( r2= 0.42–0.72). VA explained only 6% of the variance in MVC torque and was not significantly associated with power at any load ( P > 0.05). Quadriceps MVC torque and power are associated with self-reported function in knee OA, but muscle power at lower loads is more predictive of function than MVC torque. The variance in MVC torque and power between participants is due predominantly to differences in MV and has little to do with deficits in VA.


2018 ◽  
Vol 43 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Carey L. Simpson ◽  
Rowan R. Smart ◽  
Dylan E.E. Melady ◽  
Jennifer M. Jakobi

Contraction velocity of a muscle tendon unit (MTU) is dependent upon the interrelationship between fascicles shortening and the tendon lengthening. Altering the mechanical properties of these tissues through a perturbation such as static stretching slows force generation. Females, who have inherently greater compliance compared with males, have slower velocity of MTU components. The addition of a static stretch might further exacerbate this sex difference. The purpose of this study was to investigate the velocity of fascicle shortening and tendon lengthening in males and females during isometric maximal voluntary contraction (MVC) of the plantar flexors prior to and following an acute static stretch. The MTU was imaged with ultrasound and voluntary activation tested with twitch interpolation for the 5-s plantar flexion MVC, which proceeded and followed an acute stretch. For the 3-min stretch the ankle was passively rotated to maximal dorsi-flexion. The males were stronger (128.71 ± 7.88 Nm) than the females (89.92 ± 4.70 Nm) but voluntary activation did not differ. Tendon lengthening velocity (p = 0.001) and fascicle shortening velocity (p = 0.01) were faster in males than females. Tendon velocity was positively and significantly correlated with fascicle velocity, (r2 = 0.307, p = 0.02). Although sex was significant as a predictor (p = 0.05) time was not independently significant. Thus, stretch did not alter this relationship in either sex (p = 0.6). The velocity of the individual components of the MTU is slower in females when compared with males; however, acute stretch does not alter the relationship between these components in males or females.


2005 ◽  
Vol 99 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Malgorzata Klass ◽  
Stéphane Baudry ◽  
Jacques Duchateau

This study examines the age-related deficit in force of the ankle dorsiflexors during isometric (Iso), concentric (Con), and eccentric (Ecc) contractions. More specifically, the contribution of neural and muscular mechanisms to the loss of voluntary force was investigated in men and women. The torque produced by the dorsiflexors and the surface electromyogram (EMG) from the tibialis anterior and the soleus were recorded during maximal Iso contractions and during Con and Ecc contractions performed at constant angular velocities (5–100°/s). Central activation was tested by the superimposed electrical stimulation method during maximal voluntary contraction and by computing the ratio between voluntary average EMG and compound muscle action potential (M wave) induced by electrical stimulation (average EMG/M wave). Contractile properties of the dorsiflexor muscles were investigated by recording the mechanical responses to single and paired maximal stimuli. The results showed that the age-related deficit in force (collapsed across genders and velocities) was greater for Iso (20.5%; P < 0.05) and Con (38.6%; P < 0.001) contractions compared with Ecc contractions (6.5%; P > 0.05). When the torque produced during Con and Ecc contractions was expressed relative to the maximal Iso torque, it was significantly reduced in Con contractions and increased in Ecc contractions with aging, with the latter effect being more pronounced for women. In both genders, voluntary activation was not significantly impaired in elderly adults and did not differ from young subjects. Similarly, coactivation was not changed with aging. In contrast, the mechanical responses to single and paired stimuli showed a general slowing of the muscle contractile kinetics with a slightly greater effect in women. It is concluded that the force deficit during Con and Iso contractions of the ankle dorsiflexors in advanced age cannot be explained by impaired voluntary activation or changes in coactivation. Instead, this age-related adaptation and the mechanisms that preserve force in Ecc contractions appeared to be located at the muscular level.


2004 ◽  
Vol 97 (5) ◽  
pp. 1923-1929 ◽  
Author(s):  
V. Martin ◽  
G. Y. Millet ◽  
A. Martin ◽  
G. Deley ◽  
G. Lattier

The aim of this study was to compare the use of transcutaneous vs. motor nerve stimulation in the evaluation of low-frequency fatigue. Nine female and eleven male subjects, all physically active, performed a 30-min downhill run on a motorized treadmill. Knee extensor muscle contractile characteristics were measured before, immediately after (Post), and 30 min after the fatiguing exercise (Post30) by using single twitches and 0.5-s tetani at 20 Hz (P20) and 80 Hz (P80). The P20-to-P80 ratio was calculated. Electrical stimulations were randomly applied either maximally to the femoral nerve or via large surface electrodes (ES) at an intensity sufficient to evoke 50% of maximal voluntary contraction (MVC) during a 80-Hz tetanus. Voluntary activation level was also determined during isometric MVC by the twitch-interpolation technique. Knee extensor MVC and voluntary activation level decreased at all points in time postexercise ( P < 0.001). P20 and P80 displayed significant time × gender × stimulation method interactions ( P < 0.05 and P < 0.001, respectively). Both stimulation methods detected significant torque reductions at Post and Post30. Overall, ES tended to detect a greater impairment at Post in male and a lesser one in female subjects at both Post and Post30. Interestingly, the P20-P80 ratio relative decrease did not differ between the two methods of stimulation. The low-to-high frequency ratio only demonstrated a significant time effect ( P < 0.001). It can be concluded that low-frequency fatigue due to eccentric exercise appears to be accurately assessable by ES.


2021 ◽  
pp. 154596832110175
Author(s):  
Tobias Gaemelke ◽  
Morten Riemenschneider ◽  
Ulrik Dalgas ◽  
Tue Kjølhede ◽  
Cuno Rasmussen ◽  
...  

Background Motor fatigability (i.e. contraction-induced reduction in muscle strength) from a concentric task associate stronger to walking and perception of fatigue in persons with multiple sclerosis (pwMS), compared with an isometric task. However, the central and peripheral contributions of motor fatigability between these tasks have not been investigated. Objective Compare the central and peripheral contributions of motor fatigability in the knee extensors in a sustained isometric fatigability protocol versus a concentric fatigability protocol and in pwMS versus healthy controls (HCs). Methods Participants (n=31 pwMS; n=15 HCs) underwent neuromuscular testing before and immediately after two knee extensor fatigability tasks (sustained isometric and concentric) in an isokinetic dynamometer. Neuromuscular testing of fatigability consisted of maximal voluntary contraction, voluntary activation (central/neural contributor), and resting twitch (peripheral/muscular contributor) determined by the interpolated twitch technique. Results Sustained isometric and concentric fatigability protocols resulted in motor fatigability for both pwMS and HCs, with no between-protocols differences for either group. Regression analysis showed that motor fatigability variance in pwMS was mainly attributed to central fatigability in the sustained isometric protocol and to both central and peripheral fatigability in the concentric protocol. In HCs, the variance in sustained isometric and concentric fatigability were attributed to both peripheral and central fatigability. Conclusion Central and peripheral contributions of motor fatigability differed between sustained isometric and concentric protocols as well as between pwMS and HCs. These between-protocol differences in pwMS provide a neuromuscular dimension to the reported difference in the strength of associations of concentric and isometric tasks to walking and perception of fatigue in pwMS.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Mario Ponce-Silva ◽  
Daniel Salazar-Pérez ◽  
Oscar Miguel Rodríguez-Benítez ◽  
Luis Gerardo Vela-Valdés ◽  
Abraham Claudio-Sánchez ◽  
...  

The main contribution of this paper is to show a new AC/DC converter based on the rearrangement of the flyback converter. The proposed circuit only manages part of the energy and the rest is delivered directly from the source to the load. Therefore, with the new topology, the efficiency is increased, and the stress of the components is reduced. The rearrangement consist of the secondary of the flyback is placed in parallel with the load, and this arrangement is connected in series with the primary side and the rectified voltage source. The re-arranged flyback is only a reductive topology and with no magnetic isolation. It was studied as a power supply for LEDs. A low frequency averaged analysis (LFAA) was used to determine the behavior of the proposed circuit and an equivalent circuit much easier to analyze was obtained. To validate the theoretical analysis, a design methodology was developed for the re-arranged flyback converter. The designed circuit was implemented in a 10 W prototype. Experimental results showed that the converter has a THDi = 21.7% and a PF = 0.9686.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonio Sarmento ◽  
Guilherme Fregonezi ◽  
Maria Lira ◽  
Layana Marques ◽  
Francesca Pennati ◽  
...  

AbstractMuscle fatigue is a complex phenomenon enclosing various mechanisms. Despite technological advances, these mechanisms are still not fully understood in vivo. Here, simultaneous measurements of pressure, volume, and ribcage inspiratory muscle activity were performed non-invasively during fatigue (inspiratory threshold valve set at 70% of maximal inspiratory pressure) and recovery to verify if inspiratory ribcage muscle fatigue (1) leads to slowing of contraction and relaxation properties of ribcage muscles and (2) alters median frequency and high-to-low frequency ratio (H/L). During the fatigue protocol, sternocleidomastoid showed the fastest decrease in median frequency and slowest decrease in H/L. Fatigue was also characterized by a reduction in the relative power of the high-frequency and increase of the low-frequency. During recovery, changes in mechanical power were due to changes in shortening velocity with long-lasting reduction in pressure generation, and slowing of relaxation [i.e., tau (τ), half-relaxation time (½RT), and maximum relaxation rate (MRR)] was observed with no significant changes in contractile properties. Recovery of median frequency was faster than H/L, and relaxation rates correlated with shortening velocity and mechanical power of inspiratory ribcage muscles; however, with different time courses. Time constant of the inspiratory ribcage muscles during fatigue and recovery is not uniform (i.e., different inspiratory muscles may have different underlying mechanisms of fatigue), and MRR, ½RT, and τ are not only useful predictors of inspiratory ribcage muscle recovery but may also share common underlying mechanisms with shortening velocity.


2011 ◽  
Vol 36 (5) ◽  
pp. 626-633 ◽  
Author(s):  
Geoffrey A. Power ◽  
Brian H. Dalton ◽  
Charles L. Rice ◽  
Anthony A. Vandervoort

The determination of power using isokinetic testing has been shown to be highly reliable. However, isotonic and isokinetic testing involve specific mechanical constraints that likely necessitate different neuromuscular strategies. Therefore, the purpose here was to establish test–retest intrarater reliability (separated by 7 days) of loaded maximal shortening velocity and velocity-dependent power of the ankle dorsiflexors using the isotonic mode of the Biodex dynamometer (i) at baseline and (ii) throughout recovery following 150 high-intensity lengthening contractions. Intraclass correlation coefficients (ICC)2,1 with 95% CIs were used to determine relative reliability, whereas absolute reliability included typical error (TEM) and typical error expressed as a coefficient of variation (TEMCV). Twenty-four young men and women volunteered for the study. Maximal shortening velocity and power were determined with a fixed resistance set at 20% of maximal voluntary isometric contraction across 2 testing sessions separated by 7 days. ICCs were 0.93 and 0.98 for maximal shortening velocity and peak power, respectively. Following the lengthening contractions, ICCs indicated high reliability for maximal shortening velocity and peak power, 0.86 and 0.94, respectively, suggesting that a similar amount of fatigue was incurred on both days. Measures of absolute reliability for maximal shortening velocity and peak power also yielded high reliability. The isotonic mode is highly reliable when testing velocity-dependent power of the ankle dorsiflexors at baseline and following fatiguing lengthening contractions. The high reliability of this measure is encouraging and suggests that the isotonic mode can be used in various settings to track group changes before and after training and following fatigue and lengthening contractions.


Volume 2 ◽  
2004 ◽  
Author(s):  
Serdar Aritan ◽  
S. Olutunde Oyadiji ◽  
Roger M. Bartlett

The aim of this study was to characterise the bulk modulus properties of the upper arm under relaxed and controlled contraction which is defined as 25% of the maximum voluntary contraction. A new testing machine was designed to generate constant load on the upper arm and measure the deformation over time. The machine consists of a device which is effectively a cuff that applies controllable pressure on a 47 mm wide band of the upper arm. Six different loads (10, 20, 30, 40, 50 and 60 kgf) were applied over a period of time of up to a maximum of 120 seconds. The deflection-time curves obtained show strongly non-linear response of the bulk tissue. The non-linearity manifested by these deflection-time curves is in terms of both time- and load-dependency. For each load, the creep behaviour follows an exponential law typical of viscoelastic materials. At low loads (below 30kgf), the creep response increases fairly linearly as the load is increased from 10 kgf to 30 kgf. But at high loads (above 30 kgf), the creep response increases only slightly as the load is increased from 30 kgf to 60 kgf. Beyond a load of 60 kgf, the deflection or creep becomes negligible. This implies that the upper arm has reached the state of incompressibility. The creep behaviour of the upper arm was simulated using four Voigt viscoelastic models in series. The three obvious soft tissues of the upper arm, namely skin, fat and muscle, were modelled in series. The effects of blood vessels and connective tissue were also modelled in series with the other tissues.


Sign in / Sign up

Export Citation Format

Share Document