scholarly journals Time-resolved quantification of the dynamic extracellular space in the brain during short-lived event: methodology and simulations

2019 ◽  
Vol 121 (5) ◽  
pp. 1718-1734 ◽  
Author(s):  
Kevin C. Chen ◽  
Yi Zhou ◽  
Hui-Hui Zhao

Two macroscopic parameters describe the interstitial diffusion of substances in the extracellular space (ECS) of the brain, the ECS volume fraction α and the diffusion tortuosity λ. Past methods based on sampling the extracellular concentration of a membrane-impermeable ion tracer, such as tetramethylammonium (TMA+), can characterize either the dynamic α( t) alone or the constant α and λ in resting state but never the dynamic α( t) and λ( t) simultaneously in short-lived brain events. In this work, we propose to use a sinusoidal method of TMA+ to provide time-resolved quantification of α( t) and λ( t) in acute brain events. This method iontophoretically injects TMA+ in the brain ECS by a sinusoidal time pattern, samples the resulting TMA+ diffusion waveform at a distance, and analyzes the transient modulations of the amplitude and phase lag of the sampled TMA+ waveform to infer α( t) and λ( t). Applicability of the sinusoidal method was verified through computer simulations of the sinusoidal TMA+ diffusion waveform in cortical spreading depression. Parameter sensitivity analysis identified the sinusoidal frequency and the interelectrode distance as two key operating parameters. Compared with other TMA+-based methods, the sinusoidal method can more accurately capture the dynamic α( t) and λ( t) in acute brain events and is equally applicable to other pathological episodes such as epilepsy, transient ischemic attack, and brain injury. Future improvement of the method should focus on high-fidelity extraction of the waveform amplitude and phase angle. NEW & NOTEWORTHY An iontophoretic sinusoidal method of tetramethylammonium is described to capture the dynamic brain extracellular space volume fraction α and diffusion tortuosity λ. The sinusoidal frequency and interelectrode distance are two key operating parameters affecting the method’s accuracy in capturing α( t) and λ( t). High-fidelity extraction of the waveform amplitude and phase lag is critical to successful sinusoidal analyses.

2019 ◽  
Vol 121 (5) ◽  
pp. 1735-1747 ◽  
Author(s):  
Hui-Hui Zhao ◽  
Hong Du ◽  
Yujie Cai ◽  
Chao Liu ◽  
Zeyu Xie ◽  
...  

Extracellular diffusion in the brain is customarily characterized by two parameters, the extracellular space (ECS) volume fraction α and the diffusion tortuosity λ. How these two parameters are temporarily modified and correlated in a physiological/pathological event remains unclear to date. Using tetramethylammonium (TMA+) as an ECS ion tracer in a newly updated iontophoretic sinusoidal method, we studied in this work the dynamic α( t) and λ( t) in rat somatosensory cortex during spreading depression (SD). Temporal variations of α( t) and λ( t), as evoked by SD, were obtained through analyses of the extracellular TMA+ diffusion waveform resulting from a sinusoidally modulated point source. Most of the time, cortical SD induced coordinated α( t) decreases and λ( t) increases. In rare occasions, SD induced sole decreases of α( t) with no changes in λ( t). The independent modulation of α( t) and λ( t) was neither associated with cortical anatomy nor with the specific shape of the SD field potential wave. Changes of α( t) and λ( t) often took place acutely at the onset of SD, followed by a more transient modulation. Compared with the prior iontophoretic methods of TMA+, the sinusoidal method provides time-resolved quantification of α( t) and λ( t) in relative terms but also raises a higher property requirement on the TMA+-selective microelectrode. The sinusoidal method could become a valuable tool in the studies of the dynamic ECS response in various brain events. NEW & NOTEWORTHY An iontophoretic sinusoidal method was applied to study the dynamic changes of two extracellular space parameters, the extracellular volume fraction α( t) and tortuosity λ( t), in the brain during cortical spreading depression. Both parameters showed coordinated (most often) and independent (rarely) modulations in spreading depression. The sinusoidal method is equally applicable to other acute pathological events and a valuable tool to study the functional role of extracellular space in brain events.


2008 ◽  
Vol 88 (4) ◽  
pp. 1277-1340 ◽  
Author(s):  
Eva Syková ◽  
Charles Nicholson

Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is ∼20% and the tortuosity is ∼1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.


2001 ◽  
Vol 21 (9) ◽  
pp. 1077-1089 ◽  
Author(s):  
Lýdia Vargová ◽  
Pavla Jendelová ◽  
Alexandr Chvátal ◽  
Eva Syková

Glutamate release, particularly in pathologic conditions, may result in cellular swelling. The authors studied the effects of glutamate, N-methyl-d-aspartate (NMDA), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) on extracellular pH (pHe), extracellular potassium concentration ([K+]e), and changes in extracellular space (ECS) diffusion parameters (volume fraction α, tortuosity λ) resulting from cellular swelling. In the isolated spinal cord of 4-to 12-day-old rats, the application of glutamate receptor agonists induced an increase in [K+]e, alkaline-acid shifts, a substantial decrease in α, and an increase in λ. After washout of the glutamate receptor agonists, α either returned to or overshot normal values, whereas λ remained elevated. Pretreatment with 20 mmol/L Mg++, MK801, or CNQX blocked the changes in diffusion parameters, [K+]e and pHe evoked by NMDA or AMPA. However, the changes in diffusion parameters also were blocked in Ca2+-free solution, which had no effect on the [K+]e increase or acid shift. The authors conclude that increased glutamate release may produce a large, sustained and [Ca2+]e-dependent decrease in α and increase in λ. Repetitive stimulation and pathologic states resulting in glutamate release therefore may lead to changes in ECS volume and tortuosity, affecting volume transmission and enhancing glutamate neurotoxicity and neuronal damage.


2018 ◽  
Vol 38 (44) ◽  
pp. 9355-9363 ◽  
Author(s):  
Sabina Hrabetova ◽  
Laurent Cognet ◽  
Dmitri A. Rusakov ◽  
U. Valentin Nägerl

Neurosurgery ◽  
1994 ◽  
Vol 35 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Toru Fukuhara ◽  
Masaki Gotoh ◽  
Masamitsu Kawauchi ◽  
Shoji Asari ◽  
Takashi Ohmoto

2020 ◽  
Vol 30 (12) ◽  
pp. 5191-5207 ◽  
Author(s):  
Aatef Hobiny ◽  
Faris S. Alzahrani ◽  
Ibrahim Abbas

Purpose The purposes of this study, a generalized model for thermoelastic wave under three-phase lag (TPL) model is used to compute the increment of temperature, the components of displacement, the changes in volume fraction field and the stress components in a two-dimension porous medium. Design/methodology/approach By using Laplace-Fourier transformations with the eigen values methodologies, the analytical solutions of all physical variables are obtained. Findings The derived methods are estimated with numerical outcomes which are applied to the porous media in simplified geometry. Originality/value Finally, the outcomes are represented graphically to display the difference among the models of the TPL and the Green and Naghdi (GNIII) with and without energy dissipations.


2000 ◽  
Vol 66 (646) ◽  
pp. 1550-1556
Author(s):  
Daisuke SEGAWA ◽  
Hiroshi YAMASAKI ◽  
Toshikazu KADOTA ◽  
Toshihiro KAWATSU ◽  
Mitsuhiro TSUE

2006 ◽  
Vol 104 (5) ◽  
pp. 810-819 ◽  
Author(s):  
Mark E. Wagshul ◽  
John J. Chen ◽  
Michael R. Egnor ◽  
Erin J. McCormack ◽  
Patricia E. Roche

Object A recently developed model of communicating hydrocephalus suggests that ventricular dilation may be related to the redistribution of pulsations in the cranium from the subarachnoid spaces (SASs) into the ventricles. Based on this model, the authors have developed a method for analyzing flow pulsatility in the brain by using the ratio of aqueductal to cervical subarachnoid stroke volume and the phase of cerebrospinal fluid (CSF) flow, which is obtained at multiple locations throughout the cranium, relative to the phase of arterial flow. Methods Flow data were collected in a group of 15 healthy volunteers by using a series of images acquired with cardiac-gated, phase-contrast magnetic resonance imaging. The stroke volume ratio was 5.1 ± 1.8% (mean ± standard deviation). The phase lag in the aqueduct was −52.5 ± 16.5° and the phase lag in the prepontine cistern was −22.1 ± 8.2°. The flow phase at the level of C-2 was +5.1 ± 10.5°, which was consistent with flow synchronous with the arterial pulse. The subarachnoid phase lag ventral to the pons was shown to decrease progressively to zero at the craniocervical junction. Flow in the posterior cervical SAS preceded the anterior space flow. Conclusions Under normal conditions, pulsatile ventricular CSF flow is a small fraction of the net pulsatile CSF flow in the cranium. A thorough review of the literature supports the view that modified intracranial compliance can lead to redistribution of pulsations and increased intraventricular pulsations. The phase of CSF flow may also reflect the local and global compliance of the brain.


Sign in / Sign up

Export Citation Format

Share Document