Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature

2006 ◽  
Vol 104 (5) ◽  
pp. 810-819 ◽  
Author(s):  
Mark E. Wagshul ◽  
John J. Chen ◽  
Michael R. Egnor ◽  
Erin J. McCormack ◽  
Patricia E. Roche

Object A recently developed model of communicating hydrocephalus suggests that ventricular dilation may be related to the redistribution of pulsations in the cranium from the subarachnoid spaces (SASs) into the ventricles. Based on this model, the authors have developed a method for analyzing flow pulsatility in the brain by using the ratio of aqueductal to cervical subarachnoid stroke volume and the phase of cerebrospinal fluid (CSF) flow, which is obtained at multiple locations throughout the cranium, relative to the phase of arterial flow. Methods Flow data were collected in a group of 15 healthy volunteers by using a series of images acquired with cardiac-gated, phase-contrast magnetic resonance imaging. The stroke volume ratio was 5.1 ± 1.8% (mean ± standard deviation). The phase lag in the aqueduct was −52.5 ± 16.5° and the phase lag in the prepontine cistern was −22.1 ± 8.2°. The flow phase at the level of C-2 was +5.1 ± 10.5°, which was consistent with flow synchronous with the arterial pulse. The subarachnoid phase lag ventral to the pons was shown to decrease progressively to zero at the craniocervical junction. Flow in the posterior cervical SAS preceded the anterior space flow. Conclusions Under normal conditions, pulsatile ventricular CSF flow is a small fraction of the net pulsatile CSF flow in the cranium. A thorough review of the literature supports the view that modified intracranial compliance can lead to redistribution of pulsations and increased intraventricular pulsations. The phase of CSF flow may also reflect the local and global compliance of the brain.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Hardy Laura ◽  
Cantaut-Belarif Yasmine ◽  
Pietton Raphaël ◽  
Slimani Lotfi ◽  
Pascal-Moussellard Hugues

AbstractCerebrospinal fluid (CSF) circulation relies on the beating of motile cilia projecting in the lumen of the brain and spinal cord cavities Mutations in genes involved in cilia motility disturb cerebrospinal fluid circulation and result in scoliosis-like deformities of the spine in juvenile zebrafish. However, these defects in spine alignment have not been validated with clinical criteria used to diagnose adolescent idiopathic scoliosis (AIS). The aim of this study was to describe, using orthopaedic criteria the spinal deformities of a zebrafish mutant model of AIS targeting a gene involved in cilia polarity and motility, cfap298tm304. The zebrafish mutant line cfap298tm304, exhibiting alteration of CSF flow due to defective cilia motility, was raised to the juvenile stage. The analysis of mutant animals was based on micro-computed tomography (micro-CT), which was conducted in a QUANTUM FX CALIPER, with a 59 µm-30 mm protocol. 63% of the cfap298tm304 zebrafish analyzed presented a three-dimensional deformity of the spine, that was evolutive during the juvenile phase, more frequent in females, with a right convexity, a rotational component and involving at least one dislocation. We confirm here that cfap298tm304 scoliotic individuals display a typical AIS phenotype, with orthopedic criteria mirroring patient’s diagnosis.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Marco Muccio ◽  
David Chu ◽  
Lawrence Minkoff ◽  
Neeraj Kulkarni ◽  
Brianna Damadian ◽  
...  

Abstract Background Cerebrospinal fluid (CSF) circulation between the brain and spinal canal, as part of the glymphatic system, provides homeostatic support to brain functions and waste clearance. Recently, it has been observed that CSF flow is strongly driven by cardiovascular brain pulsation, and affected by body orientation. The advancement of MRI has allowed for non-invasive examination of the CSF hydrodynamic properties. However, very few studies have addressed their relationship with body position (e.g., upright versus supine). It is important to understand how CSF hydrodynamics are altered by body position change in a single cardiac phase and how cumulative long hours staying in either upright or supine position can affect craniocervical CSF flow. Methods In this study, we investigate the changes in CSF flow at the craniocervical region with flow-sensitive MRI when subjects are moved from upright to supine position. 30 healthy volunteers were imaged in upright and supine positions using an upright MRI. The cranio-caudal and caudo-cranial CSF flow, velocity and stroke volume were measured at the C2 spinal level over one cardiac cycle using phase contrast MRI. Statistical analysis was performed to identify differences in CSF flow properties between the two positions. Results CSF stroke volume per cardiac cycle, representing CSF volume oscillating in and out of the cranium, was ~ 57.6% greater in supine (p < 0.0001), due to a ~ 83.8% increase in caudo-cranial CSF peak velocity during diastole (p < 0.0001) and extended systolic phase duration when moving from upright (0.25 ± 0.05 s) to supine (0.34 ± 0.08 s; p < 0.0001). Extrapolation to a 24 h timeframe showed significantly larger total CSF volume exchanged at C2 with 10 h spent supine versus only 5 h (p < 0.0001). Conclusions In summary, body position has significant effects on CSF flow in and out of the cranium, with more CSF oscillating in supine compared to upright position. Such difference was driven by an increased caudo-cranial diastolic CSF velocity and an increased systolic phase duration when moving from upright to supine position. Extrapolation to a 24 h timeframe suggests that more time spent in supine position increases total amount of CSF exchange, which may play a beneficial role in waste clearance in the brain.


1978 ◽  
Vol 48 (6) ◽  
pp. 970-974 ◽  
Author(s):  
A. Everette James ◽  
William J. Flor ◽  
Gary R. Novak ◽  
Ernst-Peter Strecker ◽  
Barry Burns

✓ The central canal of the spinal cord has been proposed as a significant compensatory alternative pathway of cerebrospinal fluid (CSF) flow in hydrocephalus. Ten dogs were made hydrocephalic by a relatively atraumatic experimental model that simulates the human circumstance of chronic communicating hydrocephalus. The central canal was studied by histopathology and compared with 10 normal control dogs. In both groups the central canal of the spinal cord was normal in size, configuration, and histological appearance. In this experimental model dilatation of the canal and increased movement of CSF does not appear to be a compensatory alternative pathway.


Author(s):  
Deeplata Mendhe ◽  
Divyani Kanholkar ◽  
Ranjana Sharma ◽  
Kavita Gomase ◽  
Mayur Wanjari

Introduction: Hydrocephalus is the accumulation of fluid in the cavities deep within the brain. The extra fluids cause the ventricles to expand, putting pressure on the brain. The brain and spinal column are bathed in cerebrospinal fluid, which usually flows into the ventricles. Excessive cerebrospinal fluid pressure caused by hydrocephalus, on the other hand, can harm brain tissues and result in a variety of cognitive impairments. Case Presentation: Here we have selected a case of hydrocephalus. In this case, when the complete history has been taken it found that patient having a history of NICU admission for prematurity and Low Birth Weight for 40 days. During history collection, it found that the child was all right until 4 months of age after which she started to notice that the child's head circumference was increasing at an abnormal rate and has now been brought to AVBRH for further management. After all investigation in MRI brain reveals extensive dilatation of ventricular system including bilateral lateral ventricle and III and IV ventricles associated with wide-open foramen of Luschka and Magendie with thinning of the adjacent cerebral cortex and cerebellar parenchyma. Features suggestive of communicating hydrocephalus. In the EEG record, the background record  shows rhythmic synchronous > 13 Hz beta activity in the bilateral hemisphere. Abnormal EEG record. Then, the doctor planned for the Endoscopic Third Ventriculostomy with general anesthesia. Conclusion: In this study, we mainly focus on expert surgical management and excellent nursing care which leads to fast recovery of the patient. After a conversation with the patient, her response was positive and after nursing management and treatment, she was discharged without any postoperative complications and satisfaction of recovery.


Author(s):  
Joshua H. Smith ◽  
Jose Jaime García

The cerebrospinal fluid present in the central nervous system plays an important role in the physiological activities and protection of the brain. Disruptions of CSF flow lead to different forms of a disease known as hydrocephalus, characterized by a significant increment of the ventricular space. In acute hydrocephalus the Sylvius aqueduct is blocked and ventricular pressure is greatly increased.


PEDIATRICS ◽  
1957 ◽  
Vol 19 (5) ◽  
pp. 801-809
Author(s):  
Enid F. Gilbert ◽  
E. Clarence Rice

Three cases of acute lymphocytic leukemia with neurologic manifestations are presented in which the clinical signs, together with the findings in the spinal fluid, closely resembled those of acute bacterial meningitis. Review of the literature reveals an infrequent occurrence of neurologic symptoms in leukemia. When present, they usually represent a terminal phenomenon. The occurrence of a low content of sugar in the cerebrospinal fluid in association with meningeal infiltration of the brain in patients with leukemia has been reported. The relation of this phenomenon to the glycolytic activity of leukemic cells is discussed.


Science ◽  
2019 ◽  
Vol 366 (6465) ◽  
pp. 628-631 ◽  
Author(s):  
Nina E. Fultz ◽  
Giorgio Bonmassar ◽  
Kawin Setsompop ◽  
Robert A. Stickgold ◽  
Bruce R. Rosen ◽  
...  

Sleep is essential for both cognition and maintenance of healthy brain function. Slow waves in neural activity contribute to memory consolidation, whereas cerebrospinal fluid (CSF) clears metabolic waste products from the brain. Whether these two processes are related is not known. We used accelerated neuroimaging to measure physiological and neural dynamics in the human brain. We discovered a coherent pattern of oscillating electrophysiological, hemodynamic, and CSF dynamics that appears during non–rapid eye movement sleep. Neural slow waves are followed by hemodynamic oscillations, which in turn are coupled to CSF flow. These results demonstrate that the sleeping brain exhibits waves of CSF flow on a macroscopic scale, and these CSF dynamics are interlinked with neural and hemodynamic rhythms.


Author(s):  
Joel A. Lefever ◽  
José Jaime García ◽  
Joshua H. Smith

In a healthy brain, a continuous flow of cerebrospinal fluid (CSF) is produced in the choroid plexus, located in the lateral ventricles. Most of the CSF drains via the Sylvius aqueduct into the subarachnoid space around the brain, but a small amount flows directly through the cerebrum into the subarachnoid space inside the skull. Non-communicating hydrocephalus occurs when an obstruction blocks the Sylvius aqueduct. Because the cerebrum has only limited capacity for CSF to flow through it, CSF accumulates in the ventricles, yielding a significant increase in ventricular volume and deformation of the cerebrum, which may lead to tissue damage.


1983 ◽  
Vol 58 (4) ◽  
pp. 557-561 ◽  
Author(s):  
Mitsuhiro Hara ◽  
Chikafusa Kadowaki ◽  
Yoshifumi Konishi ◽  
Motohide Ogashiwa ◽  
Mitsuo Numoto ◽  
...  

✓ An implantable device for measurement of cerebrospinal fluid (CSF) flow in a ventriculoperitoneal shunt tube has been developed. The unit is energized by an extracorporeal high-frequency generator (200 KHz), and electrolysis creates bubbles in the shunt tube. Velocity of bubble flow is detected by a pair of ultrasonic Doppler probes placed a certain distance apart on the skin surface and in parallel with the implanted tube. The CSF flow rate is calculated taking into account velocity and tube diameter, and is expressed in ml/min. The unit consists of a coil with a capacitor, a silicon diode to rectify the high frequency, and a Zener diode to regulate maximum output voltage of 20 V. The output is fed to a pair of platinum electrodes placed inside the unit's tunnel through which the CSF flows. These components are molded in epoxy resin and coated with medical-grade silicone rubber. In animal experiments, CSF flow rates ranging from 0.033 to 1.0 ml/min could be measured by this flowmeter. Clinically, CSF flow has been measured to date in several cases. In two cases of communicating hydrocephalus occurring after the onset of cerebrovascular disease, and in which the CSF flow was continuously monitored for 24 hours, the flow rate ranged between 0.05 and 0.78 ml/min. The CSF flow rate fluctuates in a 24-hour period, increasing in the morning, especially between 12 midnight and 6 a.m., which suggests a circadian rhythm.


Sign in / Sign up

Export Citation Format

Share Document