scholarly journals Surface electrodes record and label brain neurons in insects

2017 ◽  
Vol 118 (5) ◽  
pp. 2884-2889 ◽  
Author(s):  
Konstantinos Kostarakos ◽  
Berthold Hedwig

We used suction electrodes to reliably record the activity of identified ascending auditory interneurons from the anterior surface of the brain in crickets. Electrodes were gently attached to the sheath covering the projection area of the ascending interneurons and the ringlike auditory neuropil in the protocerebrum. The specificity and selectivity of the recordings were determined by the precise electrode location, which could easily be changed without causing damage to the tissue. Different nonauditory fibers were recorded at other spots of the brain surface; stable recordings lasted for several hours. The same electrodes were used to deliver fluorescent tracers into the nervous system by means of electrophoresis. This allowed us to retrograde label the recorded auditory neurons and to reveal their cell body and dendritic structure in the first thoracic ganglion. By adjusting the amount of dye injected, we specifically stained the ringlike auditory neuropil in the brain, demonstrating the clusters of cell bodies contributing to it. Our data provide a proof that surface electrodes are a versatile tool to analyze neural processing in small brains of invertebrates. NEW & NOTEWORTHY We show that surface suction electrodes can be used to monitor the activity of auditory neurons in the cricket brain. They also allow delivering electrophoretically a fluorescent tracer to label the structure of the recorded neurons and the local neuropil to which the electrode was attached. This new extracellular recording and labeling technique is a versatile and useful method to explore neural processing in invertebrate sensory and motor systems.

2012 ◽  
Vol 26 (3-4) ◽  
pp. 399-408 ◽  
Author(s):  
Masayuki Hirata ◽  
Kojiro Matsushita ◽  
Takufumi Yanagisawa ◽  
Tetsu Goto ◽  
Shayne Morris ◽  
...  

Author(s):  
R.G. Frederickson ◽  
R.G. Ulrich ◽  
J.L. Culberson

Metallic cobalt acts as an epileptogenic agent when placed on the brain surface of some experimental animals. The mechanism by which this substance produces abnormal neuronal discharge is unknown. One potentially useful approach to this problem is to study the cellular and extracellular distribution of elemental cobalt in the meninges and adjacent cerebral cortex. Since it is possible to demonstrate the morphological localization and distribution of heavy metals, such as cobalt, by correlative x-ray analysis and electron microscopy (i.e., by AEM), we are using AEM to locate and identify elemental cobalt in phagocytic meningeal cells of young 80-day postnatal opossums following a subdural injection of cobalt particles.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S543-S543
Author(s):  
Satoshi Kimura ◽  
Keigo Matsumoto ◽  
Yoshio Imahori ◽  
Katsuyoshi Mineura ◽  
Toshiyuki Itoh

Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


Author(s):  
Robert V. Shannon

The auditory brainstem implant (ABI) is a surgically implanted device to electrically stimulate auditory neurons in the cochlear nucleus complex of the brainstem in humans to restore hearing sensations. The ABI is similar in function to a cochlear implant, but overall outcomes are poorer. However, recent applications of the ABI to new patient populations and improvements in surgical technique have led to significant improvements in outcomes. While the ABI provides hearing benefits to patients, the outcomes challenge our understanding of how the brain processes neural patterns of auditory information. The neural pattern of activation produced by an ABI is highly unnatural, yet some patients achieve high levels of speech understanding. Based on a meta-analysis of ABI surgeries and outcomes, a theory is proposed of a specialized sub-system of the cochlear nucleus that is critical for speech understanding.


Author(s):  
Riitta Salmelin ◽  
Jan Kujala ◽  
Mia Liljeström

When seeking to uncover the brain correlates of language processing, timing and location are of the essence. Magnetoencephalography (MEG) offers them both, with the highest sensitivity to cortical activity. MEG has shown its worth in revealing cortical dynamics of reading, speech perception, and speech production in adults and children, in unimpaired language processing as well as developmental and acquired language disorders. The MEG signals, once recorded, provide an extensive selection of measures for examination of neural processing. Like all other neuroimaging tools, MEG has its own strengths and limitations of which the user should be aware in order to make the best possible use of this powerful method and to generate meaningful and reliable scientific data. This chapter reviews MEG methodology and how MEG has been used to study the cortical dynamics of language.


1994 ◽  
Vol 14 (5) ◽  
pp. 749-762 ◽  
Author(s):  
Jean-François Mangin ◽  
Vincent Frouin ◽  
Isabelle Bloch ◽  
Bernard Bendriem ◽  
Jaime Lopez-Krahe

We propose a fully nonsupervised methodology dedicated to the fast registration of positron emission tomography (PET) and magnetic resonance images of the brain. First, discrete representations of the surfaces of interest (head or brain surface) are automatically extracted from both images. Then, a shape-independent surface-matching algorithm gives a rigid body transformation, which allows the transfer of information between both modalities. A three-dimensional (3D) extension of the chamfer-matching principle makes up the core of this surface-matching algorithm. The optimal transformation is inferred from the minimization of a quadratic generalized distance between discrete surfaces, taking into account between-modality differences in the localization of the segmented surfaces. The minimization process is efficiently performed via the precomputation of a 3D distance map. Validation studies using a dedicated brain-shaped phantom have shown that the maximum registration error was of the order of the PET pixel size (2 mm) for the wide variety of tested configurations. The software is routinely used today in a clinical context by the physicians of the Service Hospitalier Frédéric Joliot (>150 registrations performed). The entire registration process requires ∼5 min on a conventional workstation.


2021 ◽  
Author(s):  
Tsukasa Koike ◽  
Taichi Kin ◽  
Shota Tanaka ◽  
Katsuya Sato ◽  
Tatsuya Uchida ◽  
...  

Abstract BACKGROUND Image-guided systems improve the safety, functional outcome, and overall survival of neurosurgery but require extensive equipment. OBJECTIVE To develop an image-guided surgery system that combines the brain surface photographic texture (BSP-T) captured during surgery with 3-dimensional computer graphics (3DCG) using projection mapping. METHODS Patients who underwent initial surgery with brain tumors were prospectively enrolled. The texture of the 3DCG (3DCG-T) was obtained from 3DCG under similar conditions as those when capturing the brain surface photographs. The position and orientation at the time of 3DCG-T acquisition were used as the reference. The correct position and orientation of the BSP-T were obtained by aligning the BSP-T with the 3DCG-T using normalized mutual information. The BSP-T was combined with and displayed on the 3DCG using projection mapping. This mixed-reality projection mapping (MRPM) was used prospectively in 15 patients (mean age 46.6 yr, 6 males). The difference between the centerlines of surface blood vessels on the BSP-T and 3DCG constituted the target registration error (TRE) and was measured in 16 fields of the craniotomy area. We also measured the time required for image processing. RESULTS The TRE was measured at 158 locations in the 15 patients, with an average of 1.19 ± 0.14 mm (mean ± standard error). The average image processing time was 16.58 min. CONCLUSION Our MRPM method does not require extensive equipment while presenting information of patients’ anatomy together with medical images in the same coordinate system. It has the potential to improve patient safety.


2014 ◽  
Vol 21 (3) ◽  
pp. 301-304
Author(s):  
Amit Agrawal

Abstract Meningiomas arising from the falcotentorial junction are the rarest subgroup of tentorial menigiomas. Because of the distance from the brain surface and the surrounding deep cerebral veins these lesions are difficult and dangerous to treat surgically. A 45-year-old female presented with the history of progressive headache, disorientation, unsteadiness, and urinary incontinence for over 6 months. The patient developed difficulty in swallowing, and weakness of all four limbs for the last 7 days. CT scan brain plain and contrast showed a large well defined, homogenously enhancing mass lesion in the peineal region with compression of the upper brain stem and obstructive hydrocephalus. Inspite of the good surgical decompression the patient did not do well. As described in the literature, the compression of the midbrain can cause severe respiratory disturbances with fatal outcome; probably the similar mechanism resulted in poor outcome in present case. As we noticed the diffuse hypodensity in midbrain on CT scan, similar findings have been described in literature in cases of transtentorial herniation with poorer outcome.


2021 ◽  
Vol 118 (20) ◽  
pp. e2022491118
Author(s):  
Jeroen M. van Baar ◽  
David J. Halpern ◽  
Oriel FeldmanHall

Political partisans see the world through an ideologically biased lens. What drives political polarization? Although it has been posited that polarization arises because of an inability to tolerate uncertainty and a need to hold predictable beliefs about the world, evidence for this hypothesis remains elusive. We examined the relationship between uncertainty tolerance and political polarization using a combination of brain-to-brain synchrony and intersubject representational similarity analysis, which measured committed liberals’ and conservatives’ (n = 44) subjective interpretation of naturalistic political video material. Shared ideology between participants increased neural synchrony throughout the brain during a polarizing political debate filled with provocative language but not during a neutrally worded news clip on polarized topics or a nonpolitical documentary. During the political debate, neural synchrony in mentalizing and valuation networks was modulated by one’s aversion to uncertainty: Uncertainty-intolerant individuals experienced greater brain-to-brain synchrony with politically like-minded peers and lower synchrony with political opponents—an effect observed for liberals and conservatives alike. Moreover, the greater the neural synchrony between committed partisans, the more likely that two individuals formed similar, polarized attitudes about the debate. These results suggest that uncertainty attitudes gate the shared neural processing of political narratives, thereby fueling polarized attitude formation about hot-button issues.


Sign in / Sign up

Export Citation Format

Share Document