scholarly journals Ion Conductances in Supporting Cells Isolated From the Mouse Vomeronasal Organ

2003 ◽  
Vol 89 (1) ◽  
pp. 118-127 ◽  
Author(s):  
Valeria Ghiaroni ◽  
Francesca Fieni ◽  
Roberto Tirindelli ◽  
Pierangelo Pietra ◽  
Albertino Bigiani

The vomeronasal organ (VNO) is a chemosensory structure involved in the detection of pheromones in most mammals. The VNO sensory epithelium contains both neurons and supporting cells. Data suggest that vomeronasal neurons represent the pheromonal transduction sites, whereas scarce information is available on the functional properties of supporting cells. To begin to understand their role in VNO physiology, we have characterized with patch-clamp recording techniques the electrophysiological properties of supporting cells isolated from the neuroepithelium of the mouse VNO. Supporting cells were distinguished from neurons by their typical morphology and by the lack of immunoreactivity for Gγ8 and OMP, two specific markers for vomeronasal neurons. Unlike glial cells in other tissues, VNO supporting cells exhibited a depolarized resting potential (about −29 mV). A Goldman-Hodgkin-Katz analysis for resting ion permeabilities revealed indeed an unique ratio of P K: P Na: P Cl= 1:0.23:1.4. Supporting cells also possessed voltage-dependent K+ and Na+ conductances that differed significantly in their biophysical and pharmacological properties from those expressed by VNO neurons. Thus glial membranes in the VNO can sustain significant fluxes of K+ and Na+, as well as Cl−. This functional property might allow supporting cells to mop-up and redistribute the excess of KCl and NaCl that often occurs in certain pheromone-delivering fluids, like urine, and that could blunt the sensitivity of VNO neurons to pheromones. Therefore vomeronasal supporting cells could affect chemosensory transduction in the VNO by regulating the ionic strength of the pheromone-containing medium.

Patch-clamp recording from the plasmalemma of rat cultured astrocytes reveals the presence of both voltage-dependent sodium and voltage-dependent potassium conductances. These conductances are similar but not identical to the corresponding conductances in the axolemma. Whereas the h ∞ relation of the sodium channels has the same voltage dependence as in the nodal axolemma, the peak current-voltage relation is shifted by about 30 mV along the voltage axis in the depolarizing direction. It is speculated that the glial cells synthesize sodium and potassium channels for later insertion into the axolemma of neighbouring axons. The astrocytes also express a plasmalemmal voltage-dependent anion conductance that is turned on at about —40 mV (that is, near the resting potential of the cultured astrocytes). The channels involved are large enough to be just permeable to glutamate but not to ascorbate. It is suggested that the conductance of this channel for chloride plays a physiological role in the spatial buffering of pottassium by glial cells.


1971 ◽  
Vol 24 (3) ◽  
pp. 787 ◽  
Author(s):  
JC Wadsworth ◽  
AD Shannon

The sensory epithelium of the vomeronasal organ of the suckling rat consists of three cell types: receptor, supporting, and basal. Receptor cells are peripherally situated neurones and have dendritic and axonic processes extending from the perikaryon. The former expands near the epithelial surface to an enlarged area containing vacuoles, numerous centrioles, and electron�dense granules. The free surface carries numerous microvilli but no cilia. The perikaryon contains extensive rough endoplasmic reticulum and prominent Golgi apparatus. Microtubules occur in both processes. Supporting cells are enlarged near the surface to surround receptor dendrites. In the first 7 days after birth many supporting cells carry a single cilium of the "9 + 0" pattern.


2021 ◽  
Author(s):  
Fourcaud-Trocmé Nicolas ◽  
Zbili Mickaël ◽  
Duchamp-Viret Patricia ◽  
Kuczewski Nicola

AbstractIn the olfactory bulb (OB), mitral cells (MCs) display a spontaneous firing that is characterized by bursts of action potentials intermixed with silent periods. Burst firing frequency and duration are heterogeneous among MCs and increase with membrane depolarization. By using patch clamp recording on rat slices, we dissected out the intrinsic properties responsible of this activity. We showed that the threshold of action potential (AP) generation dynamically changes as a function of the trajectory of the membrane potential; becoming more negative when the membrane was hyperpolarized and having a recovering rate, inversely proportional to the membrane repolarization rate. Such variations appeared to be produced by changes in the inactivation state of voltage dependent Na+ channels. Thus, the modification AP threshold favours the initiation of the burst following hyperpolarizing event such as negative membrane oscillations or inhibitory transmission. After the first AP, the following afterhyperpolarization (AHP) brought the threshold just below the membrane resting potential or within membrane oscillations and, as a consequence, the threshold was exceeded during the fast repolarization component of the AHP. In this way the fast AHP acts as a regenerative mechanism that sustains the firing. Bursts were stopped by the development of a slow repolarization component of the AHP. The AHP characteristics appeared as determining the bursting properties; AHP with larger amplitudes and faster repolarizations being associated with longer and higher frequency bursts. Thus, the increase of bursts length and frequency upon membrane depolarization would be attributable to the modifications of the AHP and of Na+ channels inactivation.


1992 ◽  
Vol 68 (4) ◽  
pp. 1321-1331 ◽  
Author(s):  
A. Alonso ◽  
R. R. Llinas

1. The electrophysiological properties of guinea pig medial mammillary body (MMB) neurons were studied using an in vitro slice preparation. 2. The neurons (n = 80) had an average resting potential of -57 +/- 5.5 (SD) mV, an input resistance of 176 +/- 83 M omega, and a spike amplitude of 58 +/- 15.7 mV. Most of the neurons were silent at rest (n = 52), but some fired spontaneous single spikes (n = 16) or spike bursts (n = 14). 3. The main electrophysiological characteristic of MMB neurons was the ability to generate Ca(2+)-dependent regenerative events, which resulted in very robust burst responses. However, this regenerative event was not the same for all neurons, ranging from typical low-threshold Ca2+ spikes (LTSs) to intermediate-threshold plateau potentials (ITPs). 4. The ITPs were distinct from the LTSs in that they lasted > or = 100 ms and were not inactivated at membrane potentials at or positive to -55 mV. 5. Some cells with a prominent ITP and no LTS (n = 36) displayed repetitive, usually rhythmic, bursting (n = 14). This ITP could be powerful enough to maintain rhythmic membrane potential oscillations after pharmacological block of Na+ conductances. 6. A group of 32 MMB neurons displayed complex bursting that was generated by activation of both LTSs and ITPs. This was established on the basis of their distinct time- and voltage-dependent characteristics. In a group of neurons (n = 14), the burst responses were exclusively generated by an LTS; however, a Ca(2+)-dependent plateau potential contributed to the generation of rebound-triggered oscillatory firing. 7. In addition to the Ca(2+)-dependent LTS and/or ITP, MMB neurons always displayed high-threshold Ca2+ spikes after reduction of K+ conductances with tetraethylammonium. 8. MMB neurons display one of the richer varieties of voltage-dependent Ca2+ conductances so far encountered in mammalian CNS. We propose that the very prominent endogenous bursting and oscillatory properties of MB neurons allow this nuclear complex to function as an oscillatory relay for the transmission of low-frequency rhythmic activities throughout the limbic circuit.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1462
Author(s):  
Daisuke Kondoh ◽  
Yusuke Tanaka ◽  
Yusuke K. Kawai ◽  
Takayuki Mineshige ◽  
Kenichi Watanabe ◽  
...  

The vomeronasal organ (VNO) detects specific chemicals such as pheromones and kairomones. Hedgehogs (Eulipotyphla: Erinaceidae) have a well-developed accessory olfactory bulb that receives projections from the VNO, but little is known about the hedgehog VNO. Here, we studied the histological features of the VNO in five individual African pygmy hedgehogs by hematoxylin-eosin, periodic acid-Schiff, and Alcian blue stains. The hedgehog VNO comprises a hyaline cartilage capsule, soft tissue and epithelial lumen, and it branches from the site just before the incisive duct opening into the nasal cavity. The soft tissues contain several small mucous (or mucoserous) glands and a large serous gland, and many venous sinuses all around the lumen. The VNO lumen is round to oval throughout the hedgehog VNO, and the sensory epithelium lines almost the entire rostral part and medial wall of the middle part. These findings indicate that the VNO is functional and plays an important role in the hedgehog. Notably, the VNO apparently has a characteristic flushing mechanism with serous secretions like those of gustatory glands, which the hedgehog might frequently use to recognize the external environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hugues Berry ◽  
Stéphane Genet

AbstractThe neurons of the deep cerebellar nuclei (DCNn) represent the main functional link between the cerebellar cortex and the rest of the central nervous system. Therefore, understanding the electrophysiological properties of DCNn is of fundamental importance to understand the overall functioning of the cerebellum. Experimental data suggest that DCNn can reversibly switch between two states: the firing of spikes (F state) and a stable depolarized state (SD state). We introduce a new biophysical model of the DCNn membrane electro-responsiveness to investigate how the interplay between the documented conductances identified in DCNn give rise to these states. In the model, the F state emerges as an isola of limit cycles, i.e. a closed loop of periodic solutions disconnected from the branch of SD fixed points. This bifurcation structure endows the model with the ability to reproduce the $\text{F}\to \text{SD}$ F → SD transition triggered by hyperpolarizing current pulses. The model also reproduces the $\text{F}\to \text{SD}$ F → SD transition induced by blocking Ca currents and ascribes this transition to the blocking of the high-threshold Ca current. The model suggests that intracellular current injections can trigger fully reversible $\text{F}\leftrightarrow \text{SD}$ F ↔ SD transitions. Investigation of low-dimension reduced models suggests that the voltage-dependent Na current is prominent for these dynamical features. Finally, simulations of the model suggest that physiological synaptic inputs may trigger $\text{F}\leftrightarrow \text{SD}$ F ↔ SD transitions. These transitions could explain the puzzling observation of positively correlated activities of connected Purkinje cells and DCNn despite the former inhibit the latter.


1990 ◽  
Vol 259 (3) ◽  
pp. C402-C408 ◽  
Author(s):  
E. P. Burke ◽  
K. M. Sanders

Previous studies have suggested that the membrane potential gradient across the circular muscle layer of the canine proximal colon is due to a gradient in the contribution of the Na(+)-K(+)-ATPase. Cells at the submucosal border generate approximately 35 mV of pump potential, whereas at the myenteric border the pump contributes very little to resting potential. Results from experiments in intact muscles in which the pump is blocked are somewhat difficult to interpret because of possible effects of pump inhibitors on membrane conductances. Therefore, we studied isolated colonic myocytes to test the effects of ouabain on passive membrane properties and voltage-dependent currents. Ouabain (10(-5) M) depolarized cells and decreased input resistance from 0.487 +/- 0.060 to 0.292 +/- 0.040 G omega. The decrease in resistance was attributed to an increase in K+ conductance. Studies were also performed to measure the ouabain-dependent current. At 37 degrees C, in cells dialyzed with 19 mM intracellular Na+ concentration [( Na+]i), ouabain caused an inward current averaging 71.06 +/- 7.49 pA, which was attributed to blockade of pump current. At 24 degrees C or in cells dialyzed with low [Na+]i (11 mM), ouabain caused little change in holding current. With the input resistance of colonic cells, pump current appears capable of generating at least 35 mV. Thus an electrogenic Na+ pump could contribute significantly to membrane potential.


Endocrinology ◽  
2010 ◽  
Vol 151 (3) ◽  
pp. 1079-1088 ◽  
Author(s):  
Wiebke Hirdes ◽  
Crenguta Dinu ◽  
Christiane K. Bauer ◽  
Ulrich Boehm ◽  
Jürgen R. Schwarz

Secretion of LH from gonadotropes is initiated by a GnRH-induced increase in intracellular Ca2+ concentration ([Ca2+]i). This increase in [Ca2+]i is the result of Ca2+ release from intracellular stores and Ca2+ influx through voltage-dependent Ca2+ channels. Here we describe an ether-à-go-go-related gene (erg) K+ current in primary mouse gonadotropes and its possible function in the control of Ca2+ influx. To detect gonadotropes, we used a knock-in mouse strain, in which GnRH receptor-expressing cells are fluorescently labeled. Erg K+ currents were recorded in 80–90% of gonadotropes. Blockage of erg currents by E-4031 depolarized the resting potential by 5–8 mV and led to an increase in [Ca2+]i, which was abolished by nifedipine. GnRH inhibited erg currents by a reduction of the maximal erg current and in some cells additionally by a shift of the activation curve to more positive potentials. In conclusion, the erg current contributes to the maintenance of the resting potential in gonadotropes, thereby securing a low [Ca2+]i by restricting Ca2+ influx. In addition, the erg channels are modulated by GnRH by an as-yet unknown signal cascade.


2009 ◽  
Vol 101 (3) ◽  
pp. 1151-1159 ◽  
Author(s):  
A. Pezier ◽  
Y. V. Bobkov ◽  
B. W. Ache

The mechanism(s) of olfactory transduction in invertebrates remains to be fully understood. In lobster olfactory receptor neurons (ORNs), a nonselective sodium-gated cation (SGC) channel, a presumptive transient receptor potential (TRP)C channel homolog, plays a crucial role in olfactory transduction, at least in part by amplifying the primary transduction current. To better determine the functional role of the channel, it is important to selectively block the channel independently of other elements of the transduction cascade, causing us to search for specific pharmacological blockers of the SGC channel. Given evidence that the Na+/Ca2+ exchange inhibitor, KB-R7943, blocks mammalian TRPC channels, we studied this probe as a potential blocker of the lobster SGC channel. KB-R7943 reversibly blocked the SGC current in both inside- and outside-out patch recordings in a dose- and voltage-dependent manner. KB-R7943 decreased the channel open probability without changing single channel amplitude. KB-R7943 also reversibly and in a dose-dependent manner inhibited both the odorant-evoked discharge of lobster ORNs and the odorant-evoked whole cell current. Our findings strongly imply that KB-R7943 potently blocks the lobster SGC channel and likely does so directly and not through its ability to block the Na+/Ca2+ exchanger.


Sign in / Sign up

Export Citation Format

Share Document