scholarly journals Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials

2012 ◽  
Vol 107 (5) ◽  
pp. 1337-1355 ◽  
Author(s):  
Arjun K. Bansal ◽  
Wilson Truccolo ◽  
Carlos E. Vargas-Irwin ◽  
John P. Donoghue

Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control.

2018 ◽  
Vol 120 (5) ◽  
pp. 2232-2245 ◽  
Author(s):  
Nicholas J. Michelson ◽  
Takashi D. Y. Kozai

General anesthesia is ubiquitous in research and medicine, yet although the molecular mechanisms of anesthetics are well characterized, their ultimate influence on cortical electrophysiology remains unclear. Moreover, the influence that different anesthetics have on sensory cortexes at neuronal and ensemble scales is mostly unknown and represents an important gap in knowledge that has widespread relevance for neural sciences. To address this knowledge gap, this work explored the effects of isoflurane and ketamine/xylazine, two widely used anesthetic paradigms, on electrophysiological behavior in mouse primary visual cortex. First, multiunit activity and local field potentials were examined to understand how each anesthetic influences spontaneous activity. Then, the interlaminar relationships between populations of neurons at different cortical depths were studied to assess whether anesthetics influenced resting-state functional connectivity. Lastly, the spatiotemporal dynamics of visually evoked multiunit and local field potentials were examined to determine how each anesthetic alters communication of visual information. We found that isoflurane enhanced the rhythmicity of spontaneous ensemble activity at 10–40 Hz, which coincided with large increases in coherence between layer IV with superficial and deep layers. Ketamine preferentially increased local field potential power from 2 to 4 Hz, and the largest increases in coherence were observed between superficial and deep layers. Visually evoked responses across layers were diminished under isoflurane, and enhanced under ketamine anesthesia. These findings demonstrate that isoflurane and ketamine anesthesia differentially impact sensory processing in V1. NEW & NOTEWORTHY We directly compared electrophysiological responses in awake and anesthetized (isoflurane or ketamine) mice. We also proposed a method for quantifying and visualizing highly variable, evoked multiunit activity. Lastly, we observed distinct oscillatory responses to stimulus onset and offset in awake and isoflurane-anesthetized mice.


2006 ◽  
Vol 96 (3) ◽  
pp. 1492-1506 ◽  
Author(s):  
John G. O'Leary ◽  
Nicholas G. Hatsopoulos

Local field potentials (LFPs) recorded from primary motor cortex (MI) have been shown to be tuned to the direction of visually guided reaching movements, but MI LFPs have not been shown to be tuned to the direction of an upcoming movement during the delay period that precedes movement in an instructed-delay reaching task. Also, LFPs in dorsal premotor cortex (PMd) have not been investigated in this context. We therefore recorded LFPs from MI and PMd of monkeys ( Macaca mulatta) and investigated whether these LFPs were tuned to the direction of the upcoming movement during the delay period. In three frequency bands we identified LFP activity that was phase-locked to the onset of the instruction stimulus that specified the direction of the upcoming reach. The amplitude of this activity was often tuned to target direction with tuning widths that varied across different electrodes and frequency bands. Single-trial decoding of LFPs demonstrated that prediction of target direction from this activity was possible well before the actual movement is initiated. Decoding performance was significantly better in the slowest-frequency band compared with that in the other two higher-frequency bands. Although these results demonstrate that task-related information is available in the local field potentials, correlations among these signals recorded from a densely packed array of electrodes suggests that adequate decoding performance for neural prosthesis applications may be limited as the number of simultaneous electrode recordings is increased.


2015 ◽  
Author(s):  
Sergey D Stavisky ◽  
Jonathan C Kao ◽  
Paul Nuyujukian ◽  
Stephen I Ryu ◽  
Krishna V Shenoy

Objective. Brain-machine interfaces (BMIs) seek to enable people with movement disabilities to directly control prosthetic systems with their neural activity. Current high performance BMIs are driven by action potentials (spikes), but access to this signal often diminishes as sensors degrade over time. Decoding local field potentials (LFPs) as an alternative or complementary BMI control signal may improve performance when there is a paucity of spike signals. To date only a small handful of LFP decoding methods have been tested online; there remains a need to test different LFP decoding approaches and improve LFP-driven performance. There has also not been a reported demonstration of a hybrid BMI that decodes kinematics from both LFP and spikes. Here we first evaluate a BMI driven by the local motor potential (LMP), a low-pass filtered time-domain LFP amplitude feature. We then combine decoding of both LMP and spikes to implement a hybrid BMI. Approach. Spikes and LFP were recorded from two macaques implanted with multielectrode arrays in primary and premotor cortex while they performed a reaching task. We then evaluated closed-loop BMI control using biomimetic decoders driven by LMP, spikes, or both signals together. Main Results. LMP decoding enabled quick and accurate cursor control which surpassed previously reported LFP BMI performance. Hybrid decoding of both spikes and LMP improved performance when spikes signal quality was mediocre to poor. Significance. These findings show that LMP is an effective BMI control signal which requires minimal power to extract and can substitute for or augment impoverished spikes signals. Use of this signal may lengthen the useful lifespan of BMIs and is therefore an important step towards clinically viable BMIs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Miguel Pais-Vieira ◽  
Carolina Kunicki ◽  
André Peres ◽  
Nuno Sousa

AbstractStress responses are associated with elevations in corticosterone levels and, as a consequence, increases in glutamate in the central nervous system which can lead to neurological impairment. Ceftriaxone promotes glutamate transport and has been used to reduce glutamate toxicity, but so far it is not known whether ceftriaxone is able to reverse the effects of corticosterone administration. Here we describe the separate and combined effects of acute ceftriaxone and acute corticosterone administration in local field potentials (LFPs) recorded from the somatosensory cortex (S1) of anesthetized mice. For this, LFPs were recorded from groups of anesthetized mice injected with saline, corticosterone, ceftriaxone, or both. Comparison of global state maps, and their displacements, as measured by ratios of different frequency bands (Ratio 1: 0.5–20 Hz/0.5–45 Hz; and Ratio 2: 0.5–4.5 Hz/0.5–9 Hz) revealed distinct and opposite effects for corticosterone and for ceftriaxone. Corticosterone specifically increased the displacement in Ratio 2, while ceftriaxone decreased it; in addition, when both corticosterone and ceftriaxone were injected, Ratio 2 displacement values were again similar to those of the control group. The present results suggest that ceftriaxone and corticosterone modulate specific frequency bands in opposite directions and reveal a potential role for ceftriaxone in counteracting the effects of corticosterone.


2011 ◽  
Vol 106 (4) ◽  
pp. 1601-1603 ◽  
Author(s):  
Matthias Witte

How the brain orchestrates the musculoskeletal system to produce complex three-dimensional movements is still poorly understood. Despite first promising results in brain-machine interfaces that translate cortical activity to control output, there is an ongoing debate about which brain signals provide richest information related to movement planning and execution. Novel results by Bansal and colleagues (2011) now suggest that neuronal spiking and local field potentials jointly encode kinematics during skilled reach and grasp movements.


2010 ◽  
Vol 29 (3) ◽  
pp. 533-545 ◽  
Author(s):  
Andrei Belitski ◽  
Stefano Panzeri ◽  
Cesare Magri ◽  
Nikos K. Logothetis ◽  
Christoph Kayser

Sign in / Sign up

Export Citation Format

Share Document