scholarly journals VIP+ interneurons control neocortical activity across brain states

2016 ◽  
Vol 115 (6) ◽  
pp. 3008-3017 ◽  
Author(s):  
Jesse Jackson ◽  
Inbal Ayzenshtat ◽  
Mahesh M. Karnani ◽  
Rafael Yuste

GABAergic interneurons are positioned to powerfully influence the dynamics of neural activity, yet the interneuron-mediated circuit mechanisms that control spontaneous and evoked neocortical activity remains elusive. Vasoactive intestinal peptide (VIP+) interneurons are a specialized cell class which synapse specifically on other interneurons, potentially serving to facilitate increases in cortical activity. In this study, using in vivo Ca2+ imaging, we describe the interaction between local network activity and VIP+ cells and determine their role in modulating neocortical activity in mouse visual cortex. VIP+ cells were active across brain states including locomotion, nonlocomotion, visual stimulation, and under anesthesia. VIP+ activity correlated most clearly with the mean level of population activity of nearby excitatory neurons during all brain states, suggesting VIP+ cells enable high-excitability states in the cortex. The pharmacogenetic blockade of VIP+ cell output reduced network activity during locomotion, nonlocomotion, anesthesia, and visual stimulation, suggesting VIP+ cells exert a state-independent facilitation of neural activity in the cortex. Collectively, our findings demonstrate that VIP+ neurons have a causal role in the generation of high-activity regimes during spontaneous and stimulus evoked neocortical activity.

2016 ◽  
Vol 115 (4) ◽  
pp. 1821-1835 ◽  
Author(s):  
Cristin G. Welle ◽  
Diego Contreras

Gamma oscillations are a robust component of sensory responses but are also part of the background spontaneous activity of the brain. To determine whether the properties of gamma oscillations in cortex are specific to their mechanism of generation, we compared in mouse visual cortex in vivo the laminar geometry and single-neuron rhythmicity of oscillations produced during sensory representation with those occurring spontaneously in the absence of stimulation. In mouse visual cortex under anesthesia (isoflurane and xylazine), visual stimulation triggered oscillations mainly between 20 and 50 Hz, which, because of their similar functional significance to gamma oscillations in higher mammals, we define here as gamma range. Sensory representation in visual cortex specifically increased gamma oscillation amplitude in the supragranular (L2/3) and granular (L4) layers and strongly entrained putative excitatory and inhibitory neurons in infragranular layers, while spontaneous gamma oscillations were distributed evenly through the cortical depth and primarily entrained putative inhibitory neurons in the infragranular (L5/6) cortical layers. The difference in laminar distribution of gamma oscillations during the two different conditions may result from differences in the source of excitatory input to the cortex. In addition, modulation of superficial gamma oscillation amplitude did not result in a corresponding change in deep-layer oscillations, suggesting that superficial and deep layers of cortex may utilize independent but related networks for gamma generation. These results demonstrate that stimulus-driven gamma oscillations engage cortical circuitry in a manner distinct from spontaneous oscillations and suggest multiple networks for the generation of gamma oscillations in cortex.


2017 ◽  
Vol 118 (5) ◽  
pp. 2579-2591 ◽  
Author(s):  
Mahmood S. Hoseini ◽  
Jeff Pobst ◽  
Nathaniel Wright ◽  
Wesley Clawson ◽  
Woodrow Shew ◽  
...  

Bursts of oscillatory neural activity have been hypothesized to be a core mechanism by which remote brain regions can communicate. Such a hypothesis raises the question to what extent oscillations are coherent across spatially distant neural populations. To address this question, we obtained local field potential (LFP) and membrane potential recordings from the visual cortex of turtle in response to visual stimulation of the retina. The time-frequency analysis of these recordings revealed pronounced bursts of oscillatory neural activity and a large trial-to-trial variability in the spectral and temporal properties of the observed oscillations. First, local bursts of oscillations varied from trial to trial in both burst duration and peak frequency. Second, oscillations of a given recording site were not autocoherent; i.e., the phase did not progress linearly in time. Third, LFP oscillations at spatially separate locations within the visual cortex were more phase coherent in the presence of visual stimulation than during ongoing activity. In contrast, the membrane potential oscillations from pairs of simultaneously recorded pyramidal neurons showed smaller phase coherence, which did not change when switching from black screen to visual stimulation. In conclusion, neuronal oscillations at distant locations in visual cortex are coherent at the mesoscale of population activity, but coherence is largely absent at the microscale of the membrane potential of neurons. NEW & NOTEWORTHY Coherent oscillatory neural activity has long been hypothesized as a potential mechanism for communication across locations in the brain. In this study we confirm the existence of coherent oscillations at the mesoscale of integrated cortical population activity. However, at the microscopic level of neurons, we find no evidence for coherence among oscillatory membrane potential fluctuations. These results raise questions about the applicability of the communication through coherence hypothesis to the level of the membrane potential.


2018 ◽  
Author(s):  
Shuting Han ◽  
Weijian Yang ◽  
Rafael Yuste

To capture the emergent properties of neural circuits, high-speed volumetric imaging of neural activity at cellular resolution is desirable. But while conventional two-photon calcium imaging is a powerful tool to study population activity in vivo, it is restrained to two-dimensional planes. Expanding it to 3D while maintaining high spatiotemporal resolution appears necessary. Here, we developed a two-photon microscope with dual-color laser excitation that can image neural activity in a 3D volume. We imaged the neuronal activity of primary visual cortex from awake mice, spanning from L2 to L5 with 10 planes, at a rate of 10 vol/sec, and demonstrated volumetric imaging of L1 long-range PFC projections and L2/3 somatas. Using this method, we map visually-evoked neuronal ensembles in 3D, finding a lack of columnar structure in orientation responses and revealing functional correlations between cortical layers which differ from trial to trial and are missed in sequential imaging. We also reveal functional interactions between presynaptic L1 axons and postsynaptic L2/3 neurons. Volumetric two-photon imaging appears an ideal method for functional connectomics of neural circuits.


2016 ◽  
Author(s):  
Nathaniel C. Wright ◽  
Ralf Wessel

A primary goal of systems neuroscience is to understand cortical function, which typically involves studying spontaneous and sensory-evoked cortical activity. Mounting evidence suggests a strong and complex relationship between the ongoing and evoked state. To date, most work in this area has been based on spiking in populations of neurons. While advantageous in many respects, this approach is limited in scope; it records the activities of a minority of neurons, and gives no direct indication of the underlying subthreshold dynamics. Membrane potential recordings can fill these gaps in our understanding, but are difficult to obtain in vivo. Here, we record subthreshold cortical visual responses in the ex vivo turtle eye-attached whole-brain preparation, which is ideally-suited to such a study. In the absence of visual stimulation, the network is “synchronous”; neurons display network-mediated transitions between low- and high-conductance membrane potential states. The prevalence of these slow-wave transitions varies across turtles and recording sessions. Visual stimulation evokes similar high-conductance states, which are on average larger and less reliable when the ongoing state is more synchronous. Responses are muted when immediately preceded by large, spontaneous high-conductance events. Evoked spiking is sparse, highly variable across trials, and mediated by concerted synaptic inputs that are in general only very weakly correlated with inputs to nearby neurons. Together, these results highlight the multiplexed influence of the cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons.


2021 ◽  
Vol 13 ◽  
Author(s):  
Varun Chokshi ◽  
Bryce D. Grier ◽  
Andrew Dykman ◽  
Crystal L. Lantz ◽  
Ernst Niebur ◽  
...  

The history of neural activity determines the synaptic plasticity mechanisms employed in the brain. Previous studies report a rapid reduction in the strength of excitatory synapses onto layer 2/3 (L2/3) pyramidal neurons of the primary visual cortex (V1) following two days of dark exposure and subsequent re-exposure to light. The abrupt increase in visually driven activity is predicted to drive homeostatic plasticity, however, the parameters of neural activity that trigger these changes are unknown. To determine this, we first recorded spike trains in vivo from V1 layer 4 (L4) of dark exposed (DE) mice of both sexes that were re-exposed to light through homogeneous or patterned visual stimulation. We found that delivering the spike patterns recorded in vivo to L4 of V1 slices was sufficient to reduce the amplitude of miniature excitatory postsynaptic currents (mEPSCs) of V1 L2/3 neurons in DE mice, but not in slices obtained from normal reared (NR) controls. Unexpectedly, the same stimulation pattern produced an up-regulation of mEPSC amplitudes in V1 L2/3 neurons from mice that received 2 h of light re-exposure (LE). A Poisson spike train exhibiting the same average frequency as the patterns recorded in vivo was equally effective at depressing mEPSC amplitudes in L2/3 neurons in V1 slices prepared from DE mice. Collectively, our results suggest that the history of visual experience modifies the responses of V1 neurons to stimulation and that rapid homeostatic depression of excitatory synapses can be driven by non-patterned input activity.


2018 ◽  
Vol 15 (8) ◽  
pp. 731-742 ◽  
Author(s):  
José M. Cornejo-Montes-de-Oca ◽  
Rebeca Hernández-Soto ◽  
Arturo G. Isla ◽  
Carlos E. Morado-Urbina ◽  
Fernando Peña-Ortega

Background: Amyloid beta inhibits olfactory bulb function. The mechanisms involved in this effect must include alterations in network excitability, inflammation and the activation of different transduction pathways. Thus, here we tested whether tolfenamic acid, a drug that modulates several of these pathological processes, could prevent amyloid beta-induced olfactory bulb dysfunction. Objective: To test whether tolfenamic acid prevents amyloid beta-induced alterations in olfactory bulb network function, olfaction and GSK3β activity. Method: The protective effects of tolfenamic acid against amyloid beta-induced population activity inhibition were tested in olfactory bulb slices from adult mice, while tolfenamic acid and amyloid beta were bath-applied. We also tested the effects of amyloid-beta in slices obtained from animals pre-treated chronically (21 days) with tolfenamic acid. The effects of amyloid beta micro-injected into the olfactory bulbs were also tested, after two weeks, on olfactory bulb population activity and olfaction in control and tolfenamic acid chronically treated animals. Olfaction was assessed with the odor-avoidance and the habituation/cross-habituation tests. GSK3β activation was evaluated with Western-blot. Results: Acute bath application of tolfenamic acid does not prevent amyloid beta-induced inhibition of olfactory bulb network activity in vitro. In contrast, chronic treatment with tolfenamic acid renders the olfactory bulb resistant to amyloid beta-induced network activity inhibition in vitro and in vivo, which correlates with the inhibition of GSK3β activation and the protection against amyloid beta-induced olfactory dysfunction. Conclusion: Our data further support the use of tolfenamic acid to prevent amyloid beta-induced pathology and the early symptoms of Alzheimer Disease.


2007 ◽  
Vol 97 (6) ◽  
pp. 4186-4202 ◽  
Author(s):  
Bilal Haider ◽  
Alvaro Duque ◽  
Andrea R. Hasenstaub ◽  
Yuguo Yu ◽  
David A. McCormick

Spontaneous activity within local circuits affects the integrative properties of neurons and networks. We have previously shown that neocortical network activity exhibits a balance between excitatory and inhibitory synaptic potentials, and such activity has significant effects on synaptic transmission, action potential generation, and spike timing. However, whether such activity facilitates or reduces sensory responses has yet to be clearly determined. We examined this hypothesis in the primary visual cortex in vivo during slow oscillations in ketamine-xylazine anesthetized cats. We measured network activity (Up states) with extracellular recording, while simultaneously recording postsynaptic potentials (PSPs) and action potentials in nearby cells. Stimulating the receptive field revealed that spiking responses of both simple and complex cells were significantly enhanced (>2-fold) during network activity, as were spiking responses to intracellular injection of varying amplitude artificial conductance stimuli. Visually evoked PSPs were not significantly different in amplitude during network activity or quiescence; instead, spontaneous depolarization caused by network activity brought these evoked PSPs closer to firing threshold. Further examination revealed that visual responsiveness was gradually enhanced by progressive membrane potential depolarization. These spontaneous depolarizations enhanced responsiveness to stimuli of varying contrasts, resulting in an upward (multiplicative) scaling of the contrast response function. Our results suggest that small increases in ongoing balanced network activity that result in depolarization may provide a rapid and generalized mechanism to control the responsiveness (gain) of cortical neurons, such as occurs during shifts in spatial attention.


2004 ◽  
Vol 92 (5) ◽  
pp. 2844-2852 ◽  
Author(s):  
Andrew K. Tryba ◽  
Jan-Marino Ramirez

Most mammals modulate respiratory frequency (RF) to dissipate heat (e.g., panting) and avoid heat stroke during hyperthermic conditions. Respiratory neural network activity recorded in an isolated brain stem-slice preparation of mice exhibits a similar RF modulation in response to hyperthermia; fictive eupneic frequency increases while inspiratory network activity amplitude and duration are significantly reduced. Here, we study the effects of hyperthermia on the activity of synaptically isolated respiratory pacemakers to examine the possibility that these changes may account for the hyperthermic RF modulation of the respiratory network. During heating, modulation of the bursting frequency of synaptically isolated pacemakers paralleled that of population bursting recorded from the intact network, whereas nonpacemaker neurons were unaffected, suggesting that pacemaker bursting may account for the temperature-enhanced RF observed at the network level. Some respiratory neurons that were tonically active at hypothermic conditions exhibited pacemaker properties at approximately the normal body temperature of eutherian mammals (36.81 ± 1.17°C; mean ± SD) and continued to burst at 40°C. At elevated temperatures (40°C), there was an enhancement of the depolarizing drive potential in synaptically isolated pacemakers, while the amplitude of integrated population activity declined. Isolated pacemaker bursting ceased at 41–42°C ( n = 5), which corresponds to temperatures at which hyperthermic-apnea typically occurs in vivo. We conclude that pacemaker properties may play an important role in the hyperthermic frequency modulation and apnea, while network effects may play important roles in generating other aspects of the hyperthermic response, such as the decreased amplitude of ventral respiratory group activity during hyperthermia.


2021 ◽  
Author(s):  
Yuta Tezuka ◽  
Kenta M Hagihara ◽  
Kenichi Ohki ◽  
Tomoo Hirano ◽  
Yoshiaki Tagawa

The developing neocortex exhibits patterned spontaneous network activity with various synchrony levels. However, the role of such activity in the formation of cortical circuits remains unclear. We previously reported that the development of callosal axon projections, one of the major long-range axonal projections in the brain, is activity dependent. Here, using a genetic method to manipulate network activity in a stage-specific manner, we demonstrated that spontaneous cortical network activity contributes to the region- and lamina-specific projections of callosal axons in the mouse visual cortex and that this process has a critical period: restoring neuronal activity during that period resumed the projections, whereas restoration after the period failed. Furthermore, in vivo imaging revealed that less correlated network activity was critical. Together, our findings suggest that a distinct pattern of spontaneous network activity in a specific developmental stage underlies the formation of long-range axonal projections in the developing neocortex.


Sign in / Sign up

Export Citation Format

Share Document