Tolfenamic Acid Prevents Amyloid β-induced Olfactory Bulb Dysfunction In Vivo

2018 ◽  
Vol 15 (8) ◽  
pp. 731-742 ◽  
Author(s):  
José M. Cornejo-Montes-de-Oca ◽  
Rebeca Hernández-Soto ◽  
Arturo G. Isla ◽  
Carlos E. Morado-Urbina ◽  
Fernando Peña-Ortega

Background: Amyloid beta inhibits olfactory bulb function. The mechanisms involved in this effect must include alterations in network excitability, inflammation and the activation of different transduction pathways. Thus, here we tested whether tolfenamic acid, a drug that modulates several of these pathological processes, could prevent amyloid beta-induced olfactory bulb dysfunction. Objective: To test whether tolfenamic acid prevents amyloid beta-induced alterations in olfactory bulb network function, olfaction and GSK3β activity. Method: The protective effects of tolfenamic acid against amyloid beta-induced population activity inhibition were tested in olfactory bulb slices from adult mice, while tolfenamic acid and amyloid beta were bath-applied. We also tested the effects of amyloid-beta in slices obtained from animals pre-treated chronically (21 days) with tolfenamic acid. The effects of amyloid beta micro-injected into the olfactory bulbs were also tested, after two weeks, on olfactory bulb population activity and olfaction in control and tolfenamic acid chronically treated animals. Olfaction was assessed with the odor-avoidance and the habituation/cross-habituation tests. GSK3β activation was evaluated with Western-blot. Results: Acute bath application of tolfenamic acid does not prevent amyloid beta-induced inhibition of olfactory bulb network activity in vitro. In contrast, chronic treatment with tolfenamic acid renders the olfactory bulb resistant to amyloid beta-induced network activity inhibition in vitro and in vivo, which correlates with the inhibition of GSK3β activation and the protection against amyloid beta-induced olfactory dysfunction. Conclusion: Our data further support the use of tolfenamic acid to prevent amyloid beta-induced pathology and the early symptoms of Alzheimer Disease.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Paul Carrillo-Mora ◽  
Rogelio Luna ◽  
Laura Colín-Barenque

Amyloid beta (Aβ) is a peptide of 39–43 amino acids found in large amounts and forming deposits in the brain tissue of patients with Alzheimer’s disease (AD). For this reason, it has been implicated in the pathophysiology of damage observed in this type of dementia. However, the role of Aβin the pathophysiology of AD is not yet precisely understood. Aβhas been experimentally shown to have a wide range of toxic mechanismsin vivoandin vitro, such as excitotoxicity, mitochondrial alterations, synaptic dysfunction, altered calcium homeostasis, oxidative stress, and so forth. In contrast, Aβhas also shown some interesting neuroprotective and physiological properties under certain experimental conditions, suggesting that both physiological and pathological roles of Aβmay depend on several factors. In this paper, we reviewed both toxic and protective mechanisms of Aβto further explore what their potential roles could be in the pathophysiology of AD. The complete understanding of such apparently opposed effects will also be an important guide for the therapeutic efforts coming in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Md. Shahazul Islam ◽  
Cristina Quispe ◽  
Rajib Hossain ◽  
Muhammad Torequl Islam ◽  
Ahmed Al-Harrasi ◽  
...  

Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer’s disease, Amyloid β peptide, Parkinson’s disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.


2020 ◽  
Vol 83 (2) ◽  
pp. 223-230
Author(s):  
Sang-Bin Lee ◽  
Seo Young Yang ◽  
Nguyen Phuong Thao ◽  
Dae-Gun Seo ◽  
Sunggun Kim ◽  
...  

2009 ◽  
Vol 129 (8) ◽  
pp. 941-948 ◽  
Author(s):  
Bin WANG ◽  
Xue Mei WANG ◽  
Hong FU ◽  
Geng Xin LIU

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1339
Author(s):  
Ching-Chi Chang ◽  
Hsin-Hua Li ◽  
Sing-Hua Tsou ◽  
Hui-Chih Hung ◽  
Guang-Yaw Liu ◽  
...  

Amyloid β (Aβ) is a peptide fragment of the amyloid precursor protein that triggers the progression of Alzheimer’s Disease (AD). It is believed that Aβ contributes to neurodegeneration in several ways, including mitochondria dysfunction, oxidative stress and brain insulin resistance. Therefore, protecting neurons from Aβ-induced neurotoxicity is an effective strategy for attenuating AD pathogenesis. Recently, applications of stem cell-based therapies have demonstrated the ability to reduce the progression and outcome of neurodegenerative diseases. Particularly, Nanog is recognized as a stem cell-related pluripotency factor that enhances self-renewing capacities and helps reduce the senescent phenotypes of aged neuronal cells. However, whether the upregulation of Nanog can be an effective approach to alleviate Aβ-induced neurotoxicity and senescence is not yet understood. In the present study, we transiently overexpressed Nanog—both in vitro and in vivo—and investigated the protective effects and underlying mechanisms against Aβ. We found that overexpression of Nanog is responsible for attenuating Aβ-triggered neuronal insulin resistance, which restores cell survival through reducing intracellular mitochondrial superoxide accumulation and cellular senescence. In addition, upregulation of Nanog expression appears to increase secretion of neurotrophic factors through activation of the Nrf2 antioxidant defense pathway. Furthermore, improvement of memory and learning were also observed in rat model of Aβ neurotoxicity mediated by upregulation of Nanog in the brain. Taken together, our study suggests a potential role for Nanog in attenuating the neurotoxic effects of Aβ, which in turn, suggests that strategies to enhance Nanog expression may be used as a novel intervention for reducing Aβ neurotoxicity in the AD brain.


2021 ◽  
pp. 1-17
Author(s):  
Ignacio Martínez-García ◽  
Rebeca Hernández-Soto ◽  
Benjamín Villasana-Salazar ◽  
Benito Ordaz ◽  
Fernando Peña-Ortega

Background: Deficits in odor detection and discrimination are premature symptoms of Alzheimer’s disease (AD) that correlate with pathological signs in the olfactory bulb (OB) and piriform cortex (PCx). Similar olfactory dysfunction has been characterized in AD transgenic mice that overproduce amyloid-β (Aβ), which can be prevented by reducing Aβ levels by immunological and pharmacological means, suggesting that olfactory dysfunction depends on Aβ accumulation and Aβ-driven alterations in the OB and/or PCx, as well as on their activation. However, this possibility was not directly tested before. Objective: To characterize the effects of Aβ on OB and PCx excitability/coupling and on olfaction. Methods: Aβ oligomerized solution (containing oligomers, monomers, and protofibrils) or its vehicle were intracerebroventricularlly injected two weeks before OB and PCx excitability and synchrony were evaluated through field recordings in vivo and in brain slices. Synaptic transmission from the OB to the PCx was also evaluated in vitro. Olfaction was assessed through the habituation/dishabituation test. Results: Aβ did not affect lateral olfactory tract transmission into the PCx but reduced odor habituation and cross-habituation. This olfactory dysfunction was related to a reduction of PCx and OB network activity power in vivo. Moreover, the coherence between PCx-OB activities was also reduced by Aβ. Finally, Aβ treatment exacerbated the 4-aminopyridine-induced excitation in the PCx in vitro. Conclusion: Our results show that Aβ-induced olfactory dysfunction involves a complex set of pathological changes at different levels of the olfactory pathway including alterations in PCx excitability and its coupling with the OB. These pathological changes might contribute to hyposmia in AD.


2020 ◽  
Author(s):  
Johanna K. Kostka ◽  
Sabine Gretenkord ◽  
Ileana L. Hanganu-Opatz

ABSTRACTShortly after birth, the olfactory system provides to blind, deaf, non-whisking and motorically-limited rodents not only the main source of environmental inputs, but also the drive boosting the functional entrainment of limbic circuits. However, the cellular substrate of this early communication remains largely unknown. Here we combine in vivo and in vitro patch-clamp and extracellular recordings to reveal the contribution of mitral cell (MC) firing to the early patterns of network activity in the neonatal olfactory bulb (OB) and lateral entorhinal cortex (LEC), the gatekeeper of limbic circuits. We show that MCs predominantly fire either in an irregular bursting or non-bursting pattern during discontinuous theta events in OB. However, the temporal spike-theta phase coupling is stronger for bursting MCs when compared to non-bursting cells. In line with the direct OB projections to LEC, both bursting and non-bursting firing augments during coordinated patterns of entorhinal activity, yet to a higher magnitude for bursting MCs. These cells are stronger temporally coupled to the discontinuous theta events in LEC. Thus, bursting MCs might drive the entrainment of OB-LEC network during neonatal development.KEY POINTSDuring early postnatal development mitral cells show either irregular bursting or non-bursting firing patternsBursting mitral cells preferentially fire during theta bursts in the neonatal OB, being locked to the theta phaseBursting mitral cells preferentially fire during theta bursts in the neonatal lateral entorhinal cortex and are temporally related to both respiration rhythm- and theta phaseBursting mitral cells act as cellular substrate of the olfactory drive promoting the oscillatory entrainment of entorhinal networks


Sign in / Sign up

Export Citation Format

Share Document