scholarly journals Roll Rotation Cues Influence Roll Tilt Perception Assayed Using a Somatosensory Technique

2006 ◽  
Vol 96 (1) ◽  
pp. 486-491 ◽  
Author(s):  
Sukyung Park ◽  
Claire Gianna-Poulin ◽  
F. Owen Black ◽  
Scott Wood ◽  
Daniel M. Merfeld

We investigated how the nervous system processes ambiguous cues from the otolith organs by measuring roll tilt perception elicited by two motion paradigms. In one paradigm (tilt), eight subjects were sinusoidally tilted in roll with the axis of rotation near ear level. Stimulus frequencies ranged from 0.005 to 0.7 Hz, and the peak amplitude of tilt was 20°. During this paradigm, subjects experienced a sinusoidal variation of interaural gravitational force with a peak of 0.34 g. The second motion paradigm (translation) was designed to yield the same sinusoidal variation in interaural force but did not include a roll canal cue. This was achieved by sinusoidally translating the subjects along their interaural axis. For the 0.7-Hz translation trial, the subjects were simply translated from side to side. A centrifuge was used for the 0.005- to 0.5-Hz translation trials; the subjects were rotated in yaw at 250°/s for 5 min before initiating sinusoidal translations yielding an interaural otolith stimulus composed of both centrifugal and radial acceleration. Using a somatosensory task to measure roll tilt perception, we found substantial differences in tilt perception during the two motion paradigms. Because the primary difference between the two motion paradigms was the presence of roll canal cues during roll tilt trials, these perceptual differences suggest that canal cues influence tilt perception. Specifically, rotational cues provided by the semicircular canals help the CNS resolve ambiguous otolith cues during head tilt, yielding more accurate tilt perception.

2003 ◽  
Vol 89 (1) ◽  
pp. 390-400 ◽  
Author(s):  
L. H. Zupan ◽  
D. M. Merfeld

Sensory systems often provide ambiguous information. For example, otolith organs measure gravito-inertial force (GIF), the sum of gravitational force and inertial force due to linear acceleration. However, according to Einstein's equivalence principle, a change in gravitational force due to tilt is indistinguishable from a change in inertial force due to translation. Therefore the central nervous system (CNS) must use other sensory cues to distinguish tilt from translation. For example, the CNS might use dynamic visual cues indicating rotation to help determine the orientation of gravity (tilt). This, in turn, might influence the neural processes that estimate linear acceleration, since the CNS might estimate gravity and linear acceleration such that the difference between these estimates matches the measured GIF. Depending on specific sensory information inflow, inaccurate estimates of gravity and linear acceleration can occur. Specifically, we predict that illusory tilt caused by roll optokinetic cues should lead to a horizontal vestibuloocular reflex compensatory for an interaural estimate of linear acceleration, even in the absence of actual linear acceleration. To investigate these predictions, we measured eye movements binocularly using infrared video methods in 17 subjects during and after optokinetic stimulation about the subject's nasooccipital (roll) axis (60°/s, clockwise or counterclockwise). The optokinetic stimulation was applied for 60 s followed by 30 s in darkness. We simultaneously measured subjective roll tilt using a somatosensory bar. Each subject was tested in three different orientations: upright, pitched forward 10°, and pitched backward 10°. Five subjects reported significant subjective roll tilt (>10°) in directions consistent with the direction of the optokinetic stimulation. In addition to torsional optokinetic nystagmus and afternystagmus, we measured a horizontal nystagmus to the right during and following clockwise (CW) stimulation and to the left during and following counterclockwise (CCW) stimulation. These measurements match predictions that subjective tilt in the absence of real tilt should induce a nonzero estimate of interaural linear acceleration and, therefore, a horizontal eye response. Furthermore, as predicted, the horizontal response in the dark was larger for Tilters ( n = 5) than for Non-Tilters ( n= 12).


2001 ◽  
Vol 85 (4) ◽  
pp. 1648-1660 ◽  
Author(s):  
D. M. Merfeld ◽  
L. H. Zupan ◽  
C. A. Gifford

All linear accelerometers, including the otolith organs, respond equivalently to gravity and linear acceleration. To investigate how the nervous system resolves this ambiguity, we measured perceived roll tilt and reflexive eye movements in humans in the dark using two different centrifugation motion paradigms (fixed radius and variable radius) combined with two different subject orientations (facing-motion and back-to-motion). In the fixed radius trials, the radius at which the subject was seated was held constant while the rotation speed was changed to yield changes in the centrifugal force. In variable radius trials, the rotation speed was held constant while the radius was varied to yield a centrifugal force that nearly duplicated that measured during the fixed radius condition. The total gravito-inertial force (GIF) measured by the otolith organs was nearly identical in the two paradigms; the primary difference was the presence (fixed radius) or absence (variable radius) of yaw rotational cues. We found that the yaw rotational cues had a large statistically significant effect on the time course of perceived tilt, demonstrating that yaw rotational cues contribute substantially to the neural processing of roll tilt. We also found that the orientation of the subject relative to the centripetal acceleration had a dramatic influence on the eye movements measured during fixed radius centrifugation. Specifically, the horizontal vestibuloocular reflex (VOR) measured in our human subjects was always greater when the subject faced the direction of motion than when the subjects had their backs toward the motion during fixed radius rotation. This difference was consistent with the presence of a horizontal translational VOR response induced by the centripetal acceleration. Most importantly, by comparing the perceptual tilt responses to the eye movement responses, we found that the translational VOR component decayed as the subjective tilt indication aligned with the tilt of the GIF. This was true for both the fixed radius and variable radius conditions even though the time course of the responses was significantly different for these two conditions. These findings are consistent with the hypothesis that the nervous system resolves the ambiguous measurements of GIF into neural estimates of gravity and linear acceleration. More generally, these findings are consistent with the hypothesis that the nervous system uses internal models to process and interpret sensory motor cues.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darrian Rice ◽  
Giorgio P. Martinelli ◽  
Weitao Jiang ◽  
Gay R. Holstein ◽  
Suhrud M. Rajguru

A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.


2000 ◽  
Vol 84 (4) ◽  
pp. 2001-2015 ◽  
Author(s):  
L. H. Zupan ◽  
R. J. Peterka ◽  
D. M. Merfeld

Sensory systems often provide ambiguous information. Integration of various sensory cues is required for the CNS to resolve sensory ambiguity and elicit appropriate responses. The vestibular system includes two types of sensors: the semicircular canals, which measure head rotation, and the otolith organs, which measure gravito-inertial force (GIF), the sum of gravitational force and inertial force due to linear acceleration. According to Einstein's equivalence principle, gravitational force is indistinguishable from inertial force due to linear acceleration. As a consequence, otolith measurements must be supplemented with other sensory information for the CNS to distinguish tilt from translation. The GIF resolution hypothesis states that the CNS estimates gravity and linear acceleration, so that the difference between estimates of gravity and linear acceleration matches the measured GIF. Both otolith and semicircular canal cues influence this estimation of gravity and linear acceleration. The GIF resolution hypothesis predicts that inaccurate estimates of both gravity and linear acceleration can occur due to central interactions of sensory cues. The existence of specific patterns of vestibuloocular reflexes (VOR) related to these inaccurate estimates can be used to test the GIF resolution hypothesis. To investigate this hypothesis, we measured eye movements during two different protocols. In one experiment, eight subjects were rotated at a constant velocity about an earth-vertical axis and then tilted 90° in darkness to one of eight different evenly spaced final orientations, a so-called “dumping” protocol. Three speeds (200, 100, and 50°/s) and two directions, clockwise (CW) and counterclockwise (CCW), of rotation were tested. In another experiment, four subjects were rotated at a constant velocity (200°/s, CW and CCW) about an earth-horizontal axis and stopped in two different final orientations (nose-up and nose-down), a so-called “barbecue” protocol. The GIF resolution hypothesis predicts that post-rotatory horizontal VOR eye movements for both protocols should include an “induced” VOR component, compensatory to an interaural estimate of linear acceleration, even though no true interaural linear acceleration is present. The GIF resolution hypothesis accurately predicted VOR and induced VOR dependence on rotation direction, rotation speed, and head orientation. Alternative hypotheses stating that frequency segregation may discriminate tilt from translation or that the post-rotatory VOR time constant is dependent on head orientation with respect to the GIF direction did not predict the observed VOR for either experimental protocol.


2008 ◽  
Vol 17 (5-6) ◽  
pp. 209-215
Author(s):  
Gilles Clément ◽  
Pierre Denise ◽  
Millard F. Reschke ◽  
Scott J. Wood

Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45°/s in darkness at two angles of tilt (10° and 20°). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weighting of the internal representation of gravitational vertical as a result of adaptation to microgravity.


1984 ◽  
Vol 51 (1) ◽  
pp. 136-146 ◽  
Author(s):  
R. H. Schor ◽  
A. D. Miller ◽  
D. L. Tomko

Responses to head tilt were recorded from vestibular neurons in and around the lateral vestibular nucleus (LVN) of the decerebrate cat. Each animal had all six semicircular canals rendered nonfunctional by a plugging procedure. Each cell was studied by slowly tilting the cat, using one or both of two paradigms. In the first method, sinusoidal tilts (0.05 or 0.1 Hz) were used to produce bidirectional stimuli in up to 12 pairs of directions, including left/right (roll tilt) and fore/aft (pitch). The second method imposed a constant 10 degree tilt; the direction of the tilt was rotated around the animal by an appropriate combination of roll and pitch motions. Neurons responded by maximally increasing their discharge frequency in a particular direction of head tilt from the horizontal. Each cell's response could be described by a vector in the animal's horizontal plane whose orientation is given by the direction of the most effective stimulus and whose length represents the neuron's maximal sensitivity to tilt. The two methods of stimulation yielded equivalent response vectors. Response vectors were obtained for 100 neurons. The distribution of vector directions for these vestibular neurons was not uniform; there was a conspicuous absence of neurons with fore/aft-directed vectors. The sensitivity of these cells (length of the response vector) ranged from 10 to 230 impulses X s-1 X g-1 (median 50). Neurons whose vectors lay in the ipsilateral half-plane (which would be excited by ear-down tilt) tended to be less sensitive than those with contralateral vectors. Neurons excited by ear-up tilt tended to be located ventrally in the LVN, while those excited by ear-down tilt were more evenly distributed. There was no other obvious correlation of vector orientation with the anatomical locus of the cell in the LVN. The directional selectivity of the responses of these neurons to head tilts are similar to those previously reported tin utricular afferents. The broad distribution of response vector orientations provides an appropriate substrate for vestibulospinal reflexes to a wide variety of head tilts.


2019 ◽  
Vol 121 (3) ◽  
pp. 973-982 ◽  
Author(s):  
Bernard Cohen ◽  
Mingjia Dai ◽  
Sergei B. Yakushin ◽  
Catherine Cho

Although motion of the head and body has been suspected or known as the provocative cause for the production of motion sickness for centuries, it is only within the last 20 yr that the source of the signal generating motion sickness and its neural basis has been firmly established. Here, we briefly review the source of the conflicts that cause the body to generate the autonomic signs and symptoms that constitute motion sickness and provide a summary of the experimental data that have led to an understanding of how motion sickness is generated and can be controlled. Activity and structures that produce motion sickness include vestibular input through the semicircular canals, the otolith organs, and the velocity storage integrator in the vestibular nuclei. Velocity storage is produced through activity of vestibular-only (VO) neurons under control of neural structures in the nodulus of the vestibulo-cerebellum. Separate groups of nodular neurons sense orientation to gravity, roll/tilt, and translation, which provide strong inhibitory control of the VO neurons. Additionally, there are acetylcholinergic projections from the nodulus to the stomach, which along with other serotonergic inputs from the vestibular nuclei, could induce nausea and vomiting. Major inhibition is produced by the GABAB receptors, which modulate and suppress activity in the velocity storage integrator. Ingestion of the GABAB agonist baclofen causes suppression of motion sickness. Hopefully, a better understanding of the source of sensory conflict will lead to better ways to avoid and treat the autonomic signs and symptoms that constitute the syndrome.


2020 ◽  
Vol 123 (1) ◽  
pp. 209-223
Author(s):  
Jordan B. Dixon ◽  
Torin K. Clark

Exposure to microgravity during spaceflight causes central reinterpretations of orientation sensory cues in astronauts, leading to sensorimotor impairment upon return to Earth. Currently there is no ground-based analog for the neurovestibular system relevant to spaceflight. We propose such an analog, which we term the “wheelchair head-immobilization paradigm” (WHIP). Subjects lie on their side on a bed fixed to a modified electric wheelchair, with their head restrained by a custom facemask. WHIP prevents any head tilt relative to gravity, which normally produces coupled stimulation to the otoliths and semicircular canals, but does not occur in microgravity. Decoupled stimulation is produced through translation and rotation on the wheelchair by the subject using a joystick. Following 12 h of WHIP exposure, subjects systematically felt illusory sensations of self-motion when making head tilts and had significant decrements in balance and locomotion function using tasks similar to those assessed in astronauts postspaceflight. These effects were not observed in our control groups without head restraint, suggesting the altered neurovestibular stimulation patterns experienced in WHIP lead to relevant central reinterpretations. We conclude by discussing the findings in light of postspaceflight sensorimotor impairment, WHIP’s uses beyond a spaceflight analog, limitations, and future work. NEW & NOTEWORTHY We propose, implement, and demonstrate the feasibility of a new analog for spaceflight-altered neurovestibular stimulation. Following extended exposure to the analog, we found subjects reported illusory self-motion perception. Furthermore, they demonstrated decrements in balance and locomotion, using tasks similar to those used to assess astronaut sensorimotor performance postspaceflight.


1986 ◽  
Vol 56 (4) ◽  
pp. 1147-1156 ◽  
Author(s):  
R. H. Schor ◽  
I. Suzuki ◽  
S. J. Timerick ◽  
V. J. Wilson

The responses of interneurons in the cervical spinal cord of the decerebrate cat to whole-body tilt were studied with a goal of identifying spinal elements in the production of forelimb vestibular postural reflexes. Interneurons both in the cervical enlargement and at higher levels, from which propriospinal neurons have been identified, were examined, both in animals with intact labyrinths and in animals with nonfunctional semicircular canals (canal plugged). Most cervical interneurons responding to tilt respond best to rotations in vertical planes aligned within 30 degrees of the roll plane. Two to three times as many neurons are excited by side-up roll tilt as are excited by side-down roll. In cats with intact labyrinths, most responses have dynamics proportional either to (and in phase with) the position of the animal or to a sum of position and tilt velocity. This is consistent with input from both otolith organs and semicircular canals. In animals without functioning canals, the "velocity" response is absent. In a few cells (8 out of 76), a more complex response, characterized by an increasing gain and progressive phase lag, was observed. These response dynamics characterize the forelimb reflex in canal-plugged cats and have been previously observed in vestibular neurons in such preparations.


2005 ◽  
Vol 94 (1) ◽  
pp. 199-205 ◽  
Author(s):  
Daniel M. Merfeld ◽  
Sukyung Park ◽  
Claire Gianna-Poulin ◽  
F. Owen Black ◽  
Scott Wood

II. VOR and perceptual responses during combined Tilt&Translation. To compare and contrast the neural mechanisms that contribute to vestibular perception and action, we measured vestibuloocular reflexes (VOR) and perceptions of tilt and translation. We took advantage of the well-known ambiguity that the otolith organs respond to both linear acceleration and tilt with respect to gravity and investigated the mechanisms by which this ambiguity is resolved. A new motion paradigm that combined roll tilt with inter-aural translation (“ Tilt&Translation”) was used; subjects were sinusoidally (0.8 Hz) roll tilted but with their ears above or below the rotation axis. This paradigm provided sinusoidal roll canal cues that were the same across trials while providing otolith cues that varied linearly with ear position relative to the earth-horizontal rotation axis. We found that perceived tilt and translation depended on canal cues, with substantial roll tilt and inter-aural translation perceptions reported even when the otolith organs measured no inter-aural force. These findings match internal model predictions that rotational cues from the canals influence the neural processing of otolith cues. We also found horizontal translational VORs that varied linearly with radius; a minimal response was measured when the otolith organs transduced little or no inter-aural force. Hence, the horizontal translational VOR was dependent on otolith cues but independent of canal cues. These findings match predictions that translational VORs are elicited by simple filtering of otolith signals. We conclude that internal models govern human perception of tilt and translation at 0.8 Hz and that high-pass filtering governs the human translational VOR at this same frequency.


Sign in / Sign up

Export Citation Format

Share Document