scholarly journals Prehension Synergies: Trial-to-Trial Variability and Principle of Superposition During Static Prehension in Three Dimensions

2005 ◽  
Vol 93 (6) ◽  
pp. 3649-3658 ◽  
Author(s):  
Jae Kun Shim ◽  
Mark L. Latash ◽  
Vladimir M. Zatsiorsky

We performed three-dimensional analysis of the conjoint changes of digit forces during prehension (prehension synergies) and tested applicability of the principle of superposition to three-dimensional tasks. Subjects performed 25 trials at statically holding a handle instrumented with six-component force/moment sensors under seven external torque conditions; –0.70, –0.47, –0.23, 0.00, 0.23, 0.47, and 0.70 Nm about a horizontal axis in the plane passing through the centers of all five digit force sensors (the grasp plane). The total weight of the system was always 10.24 N. The trial-to-trial variability of the forces produced by the thumb and the virtual finger (an imagined finger producing the same mechanical effects as all 4 finger forces and moments combined) increased in all three dimensions with the external torque magnitude. The sets of force and moment variables associated with the moment production about the vertical axis in the grasp plane and the axis orthogonal to the grasp plane consisted of two noncorrelated subsets each; one subset of variables was related to the control of grasping forces ( grasp control) and the other sassociated with the control of the orientation of the hand-held object ( torque control). The variables associated with the moment production about the horizontal axis in the grasp plane did not include the grip force (the normal thumb and virtual finger forces) and showed more complex noncorrelated subsets. We conclude that the principle of superposition is valid for the prehension in three dimensions. The observed high correlations among forces and moments associated with the control of object orientation could be explained by chain effects, the sequences of cause-effect relations necessitated by mechanical constraints.

Geophysics ◽  
1982 ◽  
Vol 47 (12) ◽  
pp. 1627-1644 ◽  
Author(s):  
A. J. Herman ◽  
R. M. Anania ◽  
J. H. Chun ◽  
C. A. Jacewitz ◽  
R. E. F. Pepper

The frequency‐domain approach to migration extends to three dimensions. Application of the ray‐tracing approach to simple seismic events, together with the principle of superposition for complex events, leads to the correct equation for frequency‐domain migration in a constant velocity medium and a further understanding of the basic migration procedure in three dimensions. In the frequency domain, three‐dimensional (3-D) migration may be reduced to a series of two‐dimensional (2-D) migrations. A 3-D seismic model can be generated economically for structures with combinations of radial and 2-D symmetry. Starting from a 2-D synthetic, a 3-D model can be constructed by rotation about the axis of symmetry. Any line across the model may then be synthesized from the basic 2-D data. Certain more complex 3-D models can also be developed using the superposition of simpler models. Synthetic examples are used to illustrate the fact that 2-D migration of 3-D seismic data will not generally result in a correct section.


2010 ◽  
Vol 73 ◽  
pp. 91-96 ◽  
Author(s):  
Rodrigue Largenton ◽  
Victor Blanc ◽  
Philippe Thevenin ◽  
Daniel Baron

The experimental Electron Probe Micro Analysis (EPMA) characterizations on the MOX fuels evidence a heterogeneous microstructure, containing several phases. This heterogeneity must be accounted for in the numerical simulation. The first phase of this work, presented here, concerns exclusively the numerical representation of the MOX microstructure in three dimensions. Three identified steps were realized. The first one consisted in the acquisition and the treatment of two-dimensional experimental pictures thanks to a soft-ware already developed [1]. From the made treatments, the following bi-dimensional data were acquired: the surface fraction of every phase, the various diameters of inclusions within a phase as well as their surfaces fractions. However, within the framework of our study, we wished to represent our heterogeneous microstructure in three dimensions. Except, the data, supplied by this soft-ware, were bi-dimensional. Therefore, the second step of our works deal with the stereological domain. The model of Saltykov [2] was used to go back up the two-dimensional statistical information in three-dimensional. Finally, the last step of our works was to develop a tool able to build a meshed periodic numerical representation of the MOX microstructure. This innovative tool, based on a Random Sequential Absorption technique, represents MOX fuels already irradiated in reactor or any heterogeneous fuels envisaged in the future as well. For example it models two or three phases MOX fuel or any multi-phases fuels as well. Moreover, the sizes of the inclusions can vary within each phase. At the moment, the tool models spherical inclusions but nothing prevents from evolving towards more complex morphologies.


2005 ◽  
Vol 93 (2) ◽  
pp. 766-776 ◽  
Author(s):  
Jae Kun Shim ◽  
Mark L. Latash ◽  
Vladimir M. Zatsiorsky

The goal of this study was to investigate the conjoint changes of digit forces/moments in 3 dimensions during static prehension under external torques acting on the object in one plane. The experimental paradigm was similar to holding a book vertically in the air where the center of mass of the book is located farther from the hand than the points of digit contacts. Three force and 3 moment components from each digit were recorded during static prehension of a customized handle. Subjects produced forces and moments in all 3 directions, although the external torques were exerted on the handheld object about only the Z-axis. The 3-dimensional response to a 2-dimensional task was explained by the cause–effect chain effects prompted by the noncollinearity of the normal forces of the thumb and the 4 fingers (represented by the “virtual finger”). Because the forces are not collinear (not along the same line), they generate moments of force about X- and Y-axes that are negated by the finger forces along the Y- and X-directions. The magnitudes of forces produced by lateral fingers (index and little) with longer moment arms were larger compared with the central fingers (middle and ring). At the virtual finger (an imaginary digit whose mechanical action is equivalent to the summed action of the 4 fingers) level, the relative contribution of different fractions of the resistive moment produced by subjects did not depend on the torque magnitude. We conclude that the CNS 1) solves a planar prehension task by producing forces and moments in all 3 directions, 2) uses mechanical advantage of fingers, and 3) shares the total torque among finger forces and moments in a particular way disregarding the torque magnitude.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Author(s):  
Jonna Nyman

Abstract Security shapes everyday life, but despite a growing literature on everyday security there is no consensus on the meaning of the “everyday.” At the same time, the research methods that dominate the field are designed to study elites and high politics. This paper does two things. First, it brings together and synthesizes the existing literature on everyday security to argue that we should think about the everyday life of security as constituted across three dimensions: space, practice, and affect. Thus, the paper adds conceptual clarity, demonstrating that the everyday life of security is multifaceted and exists in mundane spaces, routine practices, and affective/lived experiences. Second, it works through the methodological implications of a three-dimensional understanding of everyday security. In order to capture all three dimensions and the ways in which they interact, we need to explore different methods. The paper offers one such method, exploring the everyday life of security in contemporary China through a participatory photography project with six ordinary citizens in Beijing. The central contribution of the paper is capturing—conceptually and methodologically—all three dimensions, in order to develop our understanding of the everyday life of security.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2021 ◽  
Author(s):  
Roland Tormey

AbstractStudent-teacher relationships play an important role in both teacher and student experiences in higher education and have been found to be linked to learning, classroom management, and to student absenteeism. Although historically conceptualised in terms of immediacy or distance and measured with reference to behaviours, the growing recognition of the role of emotions and of power—as well as the development of a range of multidimensional models of social relationships—all suggest it is time to re-evaluate how student-teacher relationships are understood. This paper develops a theoretical model of student-teacher affective relationships in higher education based on three dimensions: affection/warmth, attachment/safety, and assertion/power. The three-dimensional model was tested using the Classroom Affective Relationships Inventory (CARI) with data from 851 students. The data supported the use of this multidimensional model for student-teacher relationships with both two- and three-dimensional models of relationships being identified as appropriate. The theoretical development of a multidimensional model and the empirical development of an instrument with which to explore these dimensions has important implications for higher education teachers, administrators and researchers.


Sign in / Sign up

Export Citation Format

Share Document