Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami

1985 ◽  
Vol 54 (6) ◽  
pp. 1473-1497 ◽  
Author(s):  
M. Steriade ◽  
M. Deschenes ◽  
L. Domich ◽  
C. Mulle

The effects of depriving thalamic relay and intralaminar nuclei from their reticularis thalami (RE) inputs were investigated in acute and chronic experiments on cat. In acutely prepared animals, two (frontal and parasagittal) thalamic transections were made; extracellular and intracellular recordings were performed in RE-disconnected thalamic nuclei. In chronic experiments, the RE nuclear complex was lesioned by means of kainic acid injections; the activity of RE-deprived thalamocortical neurons was extracellularly studied during wakefulness and synchronized sleep. Two features distinguish RE-deprived nuclei from normal thalamic nuclei: absence of spindle-wave rhythmicity and all-burst activity of neurons. The abolition of spindle-related rhythms (sequences of 7- to 14-Hz waves recurring periodically with a rhythm of 0.1-0.2 Hz) in RE-disconnected thalamic nuclei and ipsilateral neocortical areas contrasted with normal spindling rhythmicity in contralateral EEG leads. Spontaneously occurring, rhythmic, long-lasting inhibitory postsynaptic potentials (IPSPs), as observed in intact preparations, were no longer observed in RE-disconnected thalamic neurons. The remaining inhibitory events consisted of short-duration IPSPs. The possibility that RE nucleus is a pacemaker for spindling rhythms, imposing them through inhibitory projections to target thalamic areas, is supported by our concurrent experiments that indicate RE neurons preserve their rhythmicity after disconnection from their major (cortical and thalamic) input sources. RE-deprived thalamocortical neurons exclusively exhibit high-frequency spike bursts whose intrinsic structure is identical to that of intact thalamic relay cells. Instead of the spindle-related sequences of bursts seen in normal animals, the bursts of RE-disconnected thalamocortical neurons are single events, with a dramatic rhythmicity at 1-2 Hz. The presumed mechanism of this rhythmicity is the periodic activation of a low-threshold somatic conductance whose deinactivation is brought about by temporal integration of short-lasting IPSPs. It is known that high-frequency spike bursts of thalamic relay neurons result from hyperpolarization of cell membrane. We blocked the underlying inhibitory events by bicuculline and reversibly changed the all-burst activity of RE-disconnected neurons into a tonic mode. Since the only activity of RE-deprived thalamocortical neurons consists of burst discharges, we hypothesize that local-circuit GABAergic neurons are released from inhibition after RE disconnection or lesion.

1998 ◽  
Vol 80 (3) ◽  
pp. 1495-1513 ◽  
Author(s):  
Igor Timofeev ◽  
François Grenier ◽  
Mircea Steriade

Timofeev, Igor, François Grenier, and Mircea Steriade. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J. Neurophysiol. 80: 1495–1513, 1998. In the preceding papers of this series, we have analyzed the cellular patterns and synchronization of neocortical seizures occurring spontaneously or induced by electrical stimulation or cortical infusion of bicuculline under a variety of experimental conditions, including natural states of vigilance in behaving animals and acute preparations under different anesthetics. The seizures consisted of two distinct components: spike-wave (SW) or polyspike-wave (PSW) at 2–3 Hz and fast runs at 10–15 Hz. Because the thalamus is an input source and target of cortical neurons, we investigated here the seizure behavior of thalamic reticular (RE) and thalamocortical (TC) neurons, two major cellular classes that have often been implicated in the generation of paroxysmal episodes. We performed single and dual simultaneous intracellular recordings, in conjunction with multisite field potential and extracellular unit recordings, from neocortical areas and RE and/or dorsal thalamic nuclei under ketamine-xylazine and barbiturate anesthesia. Both components of seizures were analyzed, but emphasis was placed on the fast runs because of their recent investigation at the cellular level. 1) The fast runs occurred at slightly different frequencies and, therefore, were asynchronous in various cortical neuronal pools. Consequently, dorsal thalamic nuclei, although receiving convergent inputs from different neocortical areas involved in seizure, did not express strongly synchronized fast runs. 2) Both RE and TC cells were hyperpolarized during seizure episodes with SW/PSW complexes and relatively depolarized during the fast runs. As known, hyperpolarization of thalamic neurons deinactivates a low-threshold conductance that generates high-frequency spike bursts. Accordingly, RE neurons discharged prolonged high-frequency spike bursts in close time relation with the spiky component of cortical SW/PSW complexes, whereas they fired single action potentials, spike doublets, or triplets during the fast runs. In TC cells, the cortical fast runs were reflected as excitatory postsynaptic potentials appearing after short latencies that were compatible with monosynaptic activation through corticothalamic pathways. 3) The above data suggested the cortical origin of these seizures. To further test this hypothesis, we performed experiments on completely isolated cortical slabs from suprasylvian areas 5 or 7 and demonstrated that electrical stimulation within the slab induces seizures with fast runs and SW/PSW complexes, virtually identical to those elicited in intact-brain animals. The conclusion of all papers in this series is that complex seizure patterns, resembling those described at the electroencephalogram level in different forms of clinical seizures with SW/PSW complexes and, particularly, in the Lennox-Gastaut syndrome of humans, are generated in neocortex. Thalamic neurons reflect cortical events as a function of membrane potential in RE/TC cells and degree of synchronization in cortical neuronal networks.


2002 ◽  
Vol 357 (1428) ◽  
pp. 1649-1657 ◽  
Author(s):  
Alain Destexhe ◽  
Terrence J. Sejnowski

Thalamic neurons generate high–frequency bursts of action potentials when a low–threshold (T–type) calcium current, located in soma and dendrites, becomes activated. Computational models were used to investigate the bursting properties of thalamic relay and reticular neurons. These two types of thalamic cells differ fundamentally in their ability to generate bursts following either excitatory or inhibitory events. Bursts generated with excitatory inputs in relay cells required a high degree of convergence from excitatory inputs, whereas moderate excitation drove burst discharges in reticular neurons from hyperpolarized levels. The opposite holds for inhibitory rebound bursts, which are more difficult to evoke in reticular neurons than in relay cells. The differences between the reticular neurons and thalamocortical neurons were due to different kinetics of the T–current, different electrotonic properties and different distribution patterns of the T–current in the two cell types. These properties enable the cortex to control the sensitivity of the thalamus to inputs and are also important for understanding states such as absence seizures.


Author(s):  
Ray Guillery

My thesis studies had stimulated an interest in the mamillothalamic pathways but also some puzzlement because we knew nothing about the nature of the messages passing along these pathways. Several laboratories were studying the thalamic relay of sensory pathways with great success during my post-doctoral years. Each sensory relay could be understood in terms of the appropriate sensory input, but we had no way of knowing the meaning of the mamillothalamic messages. I introduce these nuclei as an example of the many thalamic nuclei about whose input functions we still know little or nothing. Early clinical studies of mamillary lesions had suggested a role in memory formation, whereas evidence from cortical lesions suggested a role in emotional experiences. Studies of the smallest of the three nuclei forming these pathways then showed it to be concerned with sensing head direction, relevant but not sufficient for defining an animal’s position in space. More recent studies based on studies of cortical activity or cortical damage have provided a plethora of suggestions: as so often, the answers reported depend on the questions asked. That simple conclusion is relevant for all transthalamic pathways. The evidence introduced in Chapter 1, that thalamocortical messages have dual meanings, suggests that we need to rethink our questions. It may prove useful to look at the motor outputs of relevant cortical areas to get clues about some appropriate questions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Estefanía Hernandez-Martin ◽  
Enrique Arguelles ◽  
Yifei Zheng ◽  
Ruta Deshpande ◽  
Terence D. Sanger

AbstractHigh-frequency peripheral nerve stimulation has emerged as a noninvasive alternative to thalamic deep brain stimulation for some patients with essential tremor. It is not known whether such techniques might be effective for movement disorders in children, nor is the mechanism and transmission of the peripheral stimuli to central brain structures understood. This study was designed to investigate the fidelity of transmission from peripheral nerves to thalamic nuclei in children with dystonia undergoing deep brain stimulation surgery. The ventralis intermediate (VIM) thalamus nuclei showed a robust evoked response to peripheral high-frequency burst stimulation, with a greatest response magnitude to intra-burst frequencies between 50 and 100 Hz, and reliable but smaller responses up to 170 Hz. The earliest response occurred at 12–15 ms following stimulation onset, suggesting rapid high-fidelity transmission between peripheral nerve and thalamic nuclei. A high-bandwidth, low-latency transmission path from peripheral nerve to VIM thalamus is consistent with the importance of rapid and accurate sensory information for the control of coordination and movement via the cerebello-thalamo-cortical pathway. Our results suggest the possibility of non-invasive modulation of thalamic activity in children with dystonia, and therefore the possibility that a subset of children could have beneficial clinical response without the need for invasive deep brain stimulation.


Brain ◽  
1996 ◽  
Vol 119 (2) ◽  
pp. 363-375 ◽  
Author(s):  
D. Jeanmonod ◽  
M. Magnin ◽  
A. Morel

2009 ◽  
Vol 101 (6) ◽  
pp. 2741-2750 ◽  
Author(s):  
Li Zhang ◽  
Leo P. Renaud ◽  
Miloslav Kolaj

Burst firing mediated by a low-threshold spike (LTS) is the hallmark of many thalamic neurons. However, postburst afterhyperpolarizations (AHPs) are relatively uncommon in thalamus. We now report data from patch-clamp recordings in rat brain slice preparations that reveal an LTS-induced slow AHP (sAHP) in thalamic paraventricular (PVT) and other midline neurons, but not in ventrobasal or reticular thalamic neurons. The LTS-induced sAHP lasts 8.9 ± 0.4 s and has a novel pharmacology, with resistance to tetrodotoxin and cadmium and reduction by Ni2+ or nominally zero extracellular calcium concentration, which also attenuate both the LTS and sAHP. The sAHP is inhibited by 10 mM intracellular EGTA or by equimolar replacement of extracellular Ca2+ with Sr2+, consistent with select activation of LVA T-type Ca2+ channels and subsequent Ca2+ influx. In control media, the sAHP reverses near EK+, shifting to −78 mV in 10.1 mM [K+]o and is reduced by Ba2+ or tetraethylammonium. Although these data are consistent with opening of Ca2+-activated K+ channels, this sAHP lacks sensitivity to specific Ca2+-activated K+ channel blockers apamin, iberiotoxin, charybdotoxin, and UCL-2077. The LTS-induced sAHP is suppressed by a β-adrenoceptor agonist isoproterenol, a serotonin 5-HT7 receptor agonist 5-CT, a neuropeptide orexin-A, and by stimulation of the cAMP/protein kinase A pathway with 8-Br-cAMP and forskolin. The data suggest that PVT and certain midline thalamic neurons possess an LTS-induced sAHP that is pharmacologically distinct and may be important for information transfer in thalamic–limbic circuitry during states of attentiveness and motivation.


1976 ◽  
Vol 39 (5) ◽  
pp. 1020-1031 ◽  
Author(s):  
P. L. Strick

1. The origin and topographical organization of input to the arm area of the primate motor cortex from the ventrolateral thalamus were examined using the method of retrograde transport of horseradish peroxidase (HRP). 2. A thin, continuous slab of labeled neurons was found in the ventrolateral thalamus followingmultiple injections of HRP into the arm area of the motor cortex. The slab of labeled neurons was flanked, medially and laterally, by groups of unlabeled neurons. 3. The origin of ventrolateral thalamic input was more extensive than previously thought. Labeled neurons were found from A10.0 to A6.0 and occurred in three ventolateral thalamic subdivisions: ventralis lateralis pars oralis (VLo), ventralis lateralis pars caudalis (VLc), and ventralis posterior lateralis pars oralis (VPLo). For simplicity this region containing labeled neurons has been termed the ventrolateral thalamic (VL) arm area. 4. Injections of HRP into the somatic sensory cortex indicated that the thalamic regions which project to the somatic sensory cortex are separate from the VL arm area. 5. The distribution of labeled neurons following single injections of HRP into different regions of the motor cortex arm area indicated that the VL arm area is topographically organized, particularly its caudal part. Ventral regions of the VL arm area were labeled following HRP injections into motor cortex regions adjacent to the central sulcus where the representation of largely distal musculature is localized. Dorsal regions of the VL arm area were labeled following HRP injections into motor cortex regions more rostral to the central sulcus where the representation of more proximal musculature is localized. 6. A larger region of the VL arm area was labeled following HRP injections adjacent to the central sulcus than following the more rostral motor cortex injections. This suggests that, like the arm area of the motor cortex, more of the VL arm area is allotted to the representation of distal than proximal musculature. 7. Following very small cortical HRP injections, isolated labeled thalamic neurons were diffusely scattered throughout a 3-mm rostrocaudal extent of the VL arm area. In addition, a small focal cluster of labeled thalamic neurons was also seen. The labeled cluster was limited to 0.5 mm rostrocaudally and 300 mum in width. The focal distribution of labeled thalamic neurons suggests that aspects of a point to point organization may exist in the connection between VL and the motor cortex arm area.


2021 ◽  
Vol 15 ◽  
Author(s):  
Anders Wahlbom ◽  
Hannes Mogensen ◽  
Henrik Jörntell

We have previously reported different spike firing correlation patterns among pairs of adjacent pyramidal neurons within the same layer of S1 cortex in vivo, which was argued to suggest that acquired synaptic weight modifications would tend to differentiate adjacent cortical neurons despite them having access to near-identical afferent inputs. Here we made simultaneous single-electrode loose patch-clamp recordings from 14 pairs of adjacent neurons in the lateral thalamus of the ketamine-xylazine anesthetized rat in vivo to study the correlation patterns in their spike firing. As the synapses on thalamic neurons are dominated by a high number of low weight cortical inputs, which would be expected to be shared for two adjacent neurons, and as far as thalamic neurons have homogenous membrane physiology and spike generation, they would be expected to have overall similar spike firing and therefore also correlation patterns. However, we find that across a variety of thalamic nuclei the correlation patterns between pairs of adjacent thalamic neurons vary widely. The findings suggest that the connectivity and cellular physiology of the thalamocortical circuitry, in contrast to what would be expected from a straightforward interpretation of corticothalamic maps and uniform intrinsic cellular neurophysiology, has been shaped by learning to the extent that each pair of thalamic neuron has a unique relationship in their spike firing activity.


Sign in / Sign up

Export Citation Format

Share Document