PACAP38 Modulates Activity of NMDA Receptors in Cultured Chick Cortical Neurons

1997 ◽  
Vol 78 (4) ◽  
pp. 2231-2234 ◽  
Author(s):  
Guo Jun Liu ◽  
Barry W. Madsen

Liu, Guo Jun and Barry W. Madsen. PACAP38 modulates activity of NMDA receptors in cultured chick cortical neurons. J. Neurophysiol. 78: 2231–2234, 1997. The outside-out recording mode of the patch-clamp technique was used to study modulatory effects of pituitary adenylate cyclase-activating polypeptide (PACAP38) on N-methyl-d-aspartate (NMDA) receptor activity in cultured chick cortical neurons. Biphasic concentration-dependent effects of PACAP38 on channel opening frequency induced by NMDA (20 μM) and glycine (1 μM) were found, with low concentrations (0.5–2 nM) of PACAP38 increasing activity and higher concentrations (10–1,000 nM) causing inhibition. These effects were reversible, reduced with higher concentrations of glycine (2–10 μM) but not by 200 μM NMDA, and inhibited by 10 μM 7-chlorokynurenic acid. In addition, 1 μM PACAP6–38 (a PACAP antagonist) inhibited channel activity due to 20 μM NMDA and 1 μM glycine by 66%, and this inhibition was reduced to 13% in the additional presence of 2 nM PACAP38. These observations suggest thatPACAP38 has a direct modulatory effect on the NMDA receptor that is independent of intracellular second messengers and probably mediated through the glycine coagonist site(s).

2006 ◽  
Vol 96 (3) ◽  
pp. 1084-1092 ◽  
Author(s):  
Anitha B. Alex ◽  
Anthony J. Baucum ◽  
Karen S. Wilcox

Conantokin G (Con G), derived from the venom of Conus geographus, is the most characterized natural peptide antagonist targeted to N-methyl-d-aspartate (NMDA) receptors. Although Con G is known to bind to the glutamate binding site on the NR2 subunit of the receptor, it is unclear whether it can allosterically modulate the function of the receptor through the glycine binding site on the NR1 subunit. This study was designed to evaluate the action of Con G on NMDA receptor–mediated spontaneous excitatory postsynaptic currents (sEPSCs) and its modulation by glycine in cultured cortical neurons (13–19 days in vitro) using the whole cell patch-clamp technique. Con G inhibited NMDA receptor–mediated sEPSCs in a concentration-dependent manner. Also, the potency of Con G decreased as a function of time in culture. The inhibition of EPSCs observed after application of Con G in the presence of high (10 μM) and nominal (no added) concentrations of glycine was not different at 13 days in vitro (DIV). Furthermore, similar results were obtained with experiments on Con G–induced inhibition of NMDA-evoked whole cell currents. These results indicate that glycine concentrations do not have a direct effect on Con G–induced inhibition of NMDA currents. In addition, age dependency in the action of Con G on cortical neurons in vitro suggests that this model system would be useful in examining the effects of different agonists/antagonists on native synaptic NMDA receptors.


1996 ◽  
Vol 76 (5) ◽  
pp. 3415-3424 ◽  
Author(s):  
K. S. Wilcox ◽  
R. M. Fitzsimonds ◽  
B. Johnson ◽  
M. A. Dichter

1. Although glycine has been identified as a required coagonist with glutamate at N-methyl-D-aspartate (NMDA) receptors, the understanding of glycine's role in excitatory synaptic neurotransmission is quite limited. In the present study, we used the whole cell patch-clamp technique to examine the ability of glycine to regulate current flow through synaptic NMDA receptors at excitatory synapses between cultured hippocampal neurons and in acutely isolated hippocampal slices. 2. These studies demonstrate that the glycine modulatory site on the synaptic NMDA receptor is not saturated under baseline conditions and that increased glycine concentrations can markedly increased NMDA-receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal neurons in both dissociated cell culture and in slice. Saturation of the maximal effect of glycine takes place at different concentrations for different cells in culture, suggesting the presence of heterogenous NMDA receptor subunit compositions. 3. Bath-applied glycine had no effect on the time course of EPSCs in either brain slice or culture, indicating that desensitization of the NMDA receptor is not prevented by glycine over the time course of an EPSC. 4. When extracellular glycine concentration is high, all miniature EPSCs recorded in the cultured hippocampal neurons contained NMDA components, indicating that segregation of non-NMDA receptors at individual synaptic boutons does not occur.


2000 ◽  
Vol 83 (5) ◽  
pp. 2610-2615 ◽  
Author(s):  
Qingbo Tang ◽  
Ronald M. Lynch ◽  
Frank Porreca ◽  
Josephine Lai

The opioid peptide dynorphin A is known to elicit a number of pathological effects that may result from neuronal excitotoxicity. An up-regulation of this peptide has also been causally related to the dysesthesia associated with inflammation and nerve injury. These effects of dynorphin A are not mediated through opioid receptor activation but can be effectively blocked by pretreatment with N-methyl-d-aspartate (NMDA) receptor antagonists, thus implicating the excitatory amino acid system as a mediator of the actions of dynorphin A and/or its fragments. A direct interaction between dynorphin A and the NMDA receptors has been well established; however the physiological relevance of this interaction remains equivocal. This study examined whether dynorphin A elicits a neuronal excitatory effect that may underlie its activation of the NMDA receptors. Calcium imaging of individual cultured cortical neurons showed that the nonopioid peptide dynorphin A(2-17) induced a time- and dose-dependent increase in intracellular calcium. This excitatory effect of dynorphin A(2-17) was insensitive to (+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]-cyclohepten-5,10-imine (MK-801) pretreatment in NMDA-responsive cells. Thus dynorphin A stimulates neuronal cells via a nonopioid, non-NMDA mechanism. This excitatory action of dynorphin A could modulate NMDA receptor activity in vivo by enhancing excitatory neurotransmitter release or by potentiating NMDA receptor function in a calcium-dependent manner. Further characterization of this novel site of action of dynorphin A may provide new insight into the underlying mechanisms of dynorphin excitotoxicity and its pathological role in neuropathy.


1997 ◽  
Vol 77 (1) ◽  
pp. 309-323 ◽  
Author(s):  
Thomas A. Blanpied ◽  
Faye A. Boeckman ◽  
Elias Aizenman ◽  
Jon W. Johnson

Blanpied, Thomas A., Faye Boeckman, Elias Aizenman, and Jon W. Johnson. Trapping channel block of NMDA-activated responses by amantadine and memantine. J. Neurophysiol. 77: 309–323, 1997. We investigated the mechanisms by which the antiparkinsonian and neuroprotective agents amantadine and memantine inhibit responses to N-methyl-d-aspartic acid (NMDA). Whole cell recordings were performed using cultured rat cortical neurons or Chinese hamster ovary (CHO) cells expressing NMDA receptors. Both amantadine and memantine blocked NMDA-activated channels by binding to a site at which they could be trapped after channel closure and agonist unbinding. For neuronal receptors, the IC50s of amantadine and memantine at −67 mV were 39 and 1.4 μM, respectively. When memantine and agonists were washed off after steady-state block, one-sixth of the blocked channels released rather than trapped the blocker; memantine exhibited “partial trapping.” Thus memantine appears to have a lesser tendency to be trapped than do phencyclidine or (5R,10S)-(+)-5m e t h y l - 1 0 , 1 1 - d i h y d r o - 5 H - d i b e n z o [ 1 , d ] c y c l i h e p t e n - 5 , 1 0 - i m i n e(MK-801). We next investigated mechanisms that might underlie partial trapping. Memantine blocked and could be trapped by recombinant NMDA receptors composed of NR1 and either NR2A or NR2B subunits. In these receptors, as in the native receptors, the drug was released from one-sixth of blocked channels rather than being trapped in all of them. The partial trapping we observed therefore was not due to variability in the action of memantine on a heterogeneous population of NMDA receptors in cultured cortical neurons. Amantadine and memantine each noncompetitively inhibited NMDA-activated responses by binding at a second site with roughly 100-fold lower affinity, but this form of inhibition had little effect on the extent to which memantine was trapped. A simple kinetic model of blocker action was used to demonstrate that partial trapping can result if the presence of memantine in the channel affects the gating transitions or agonist affinity of the NMDA receptor. Partial trapping guarantees that during synaptic communication in the presence of blocker, some channels will release the blocker between synaptic responses. The extent to which amantadine and memantine become trapped after channel block thus may influence their therapeutic effects and their modulation of NMDA-receptor-mediated excitatory postsynaptic potentials.


1994 ◽  
Vol 302 (1) ◽  
pp. 147-154 ◽  
Author(s):  
E J Nelson ◽  
C C R Li ◽  
R Bangalore ◽  
T Benson ◽  
R S Kass ◽  
...  

Thapsigargin (TG), 2,5-t-butylhydroquinone (tBHQ) and cyclopiazonic acid (CPA) all inhibit the initial Ca(2+)-response to thyrotropin-releasing hormone (TRH) by depleting intracellular Ca2+ pools sensitive to inositol 1,4,5-trisphosphate (IP3). Treatment of GH3 pituitary cells for 30 min with 5 nM TG, 500 nM tBHQ or 50 nM CPA completely eliminated the TRH-induced spike in intracellular free Ca2+ ([Ca2+]i). Higher concentrations of TG and tBHQ, but not CPA, were also found to inhibit strongly the activity of L-type calcium channels, as measured by the increase in [Ca2+]i or 45Ca2+ influx stimulated by depolarization. TG and tBHQ blocked high-K(+)-stimulated 45Ca2+ uptake, with IC50 values of 10 and 1 microM respectively. Maximal inhibition of L-channel activity was achieved 15-30 min after drug addition. Inhibition by tBHQ was reversible, whereas inhibition by TG was not. TG and CPA did not affect spontaneous [Ca2+]i oscillations when tested at concentrations adequate to deplete the IP3-sensitive Ca2+ pool. However, 20 microM TG and 10 microM tBHQ blocked [Ca2+]i oscillations completely. The effect of drugs on calcium currents was measured directly by using the patch-clamp technique. When added to the external bath, 10 microM CPA caused a sustained increase in the calcium-channel current amplitude over 8 min, 10 microM tBHQ caused a progressive inhibition, and 10 microM TG caused an enhancement followed by a sustained block of the calcium current over 8 min. In summary, CPA depletes IP3-sensitive Ca2+ stores and does not inhibit voltage-operated calcium channels. At sufficiently low concentrations, TG depletes IP3-sensitive stores without inhibiting L-channel activity, but, for tBHQ, inhibition of calcium channels occurs at concentrations close to those needed to block agonist mobilization of intracellular Ca2+.


1995 ◽  
Vol 269 (2) ◽  
pp. C341-C348 ◽  
Author(s):  
B. Soliven ◽  
N. Wang

Arachidonic acid (AA) and its metabolites play a dual role as intracellular second messengers and as transcellular mediators of neural activity. We have previously shown that AA increases cytosolic Ca2+ in oligodendrocytes. In this work, we studied the effects of AA and other fatty acids on whole cell K+ currents of cultured rat oligodendrocytes using the patch-clamp technique. We found that 1) AA decreased the current amplitudes of both the inwardly rectifying K+ current (IKir) and the outward K+ currents (IKo) resulting in membrane depolarization; 2) AA also induced IKo current inactivation/blocked state; 3) AA appeared to act directly on K+ channels and not indirectly via its metabolic products, activation of protein kinase C, or by generation of oxygen free radicals. We have thus demonstrated an additional mechanism for AA-induced signaling in oligodendrocytes, i.e., via modulation of K+ conductances leading to membrane depolarization. The latter has been shown to influence protein phosphorylation and perhaps other important functional output of oligodendrocytes.


2009 ◽  
Vol 101 (5) ◽  
pp. 2290-2296 ◽  
Author(s):  
Felipe Espinosa ◽  
Ege T. Kavalali

Under physiological conditions N-methyl-d-aspartate (NMDA) receptor activation requires coincidence of presynaptic glutamate release and postsynaptic depolarization due to the voltage-dependent block of these receptors by extracellular Mg2+. Therefore spontaneous neurotransmission in the absence of action potential firing is not expected to lead to significant NMDA receptor activation. Here we tested this assumption in layer IV neurons in neocortex at their resting membrane potential (approximately −67 mV). In long-duration stable recordings, we averaged a large number of miniature excitatory postsynaptic currents (mEPSCs, >100) before or after application of dl-2 amino 5-phosphonovaleric acid, a specific blocker of NMDA receptors. The difference between the two mEPSC waveforms showed that the NMDA current component comprises ∼20% of the charge transfer during an average mEPSC detected at rest. Importantly, the contribution of the NMDA component was markedly enhanced at membrane potentials expected for the depolarized up states (approximately −50 mV) that cortical neurons show during slow oscillations in vivo. In addition, partial block of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor component of the mEPSCs did not cause a significant reduction in the NMDA component, indicating that potential AMPA receptor-driven local depolarizations did not drive NMDA receptor activity at rest. Collectively these results indicate that NMDA receptors significantly contribute to signaling at rest in the absence of dendritic depolarizations or concomitant AMPA receptor activity.


1997 ◽  
Vol 78 (5) ◽  
pp. 2363-2371 ◽  
Author(s):  
C. R. Jarvis ◽  
Z.-G. Xiong ◽  
J. R. Plant ◽  
D. Churchill ◽  
W.-Y. Lu ◽  
...  

Jarvis, C. R., Z.-G. Xiong, J. R. Plant, D. Churchill, W.-Y. Lu, B. A. MacVicar, and J. F. MacDonald. Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons. J. Neurophysiol. 78: 2363–2371, 1997. Patch-clamp and calcium imaging techniques were used to assess the acute effects of the neurotrophins, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF), on the responses of cultured and acutely isolated hippocampal and cultured striatal neurons to the glutamate receptor agonist N-methyl-d-aspartic acid (NMDA). The effects of BDNF on NMDA-activated currents were examined in greater detail. Currents evoked by NMDA, and the accompanying changes in intracellular calcium, were enhanced by low concentrations of the neurotrophins (1–20 ng/ml). The potentiation by the neurotrophins was rapid in onset and offset (<1 s). The neurotrophins also reduced desensitization of these currents in most cells. The enhancement of NMDA-activated currents by BDNF was observed using both perforated and whole cell patch recording techniques and could be demonstrated in outside-out patches. Furthermore, its effects were not attenuated by pretreatment with the protein kinase inhibitors genistein or 1-(5-isoquinolynesulfony)2-methylpiperazine (H7). Therefore, the actions of BDNF do not appear to be mediated by phosphorylation. Similar enhancements were observed with NT-3 and NT-4 and with NGF despite the fact that hippocampal neurons lack TrkA receptors. All together this evidence suggests that the enhancement of NMDA-evoked currents is unlikely to be mediated through the activation of growth factor receptors. Modulation of NMDA responses by BDNF was dependent on the concentration of extracellular glycine. The most pronounced potentiation by BDNF was observed at low concentrations, whereas no potentiation was observed in saturating concentrations of glycine, suggesting that BDNF may have increased the affinity of the NMDA receptor for glycine. However, the competitive glycine-site antagonist 7-chloro-kynurenic acid blocked the enhancement by BDNF without shifting the dose-inhibition relationship for this antagonist, and Mg2+ consistently depressed the potentiation of NMDA-evoked currents by BDNF, indicating that BDNF does not alter glycine affinity. BDNF also reversibly increased the probability of opening of NMDA channels recorded from outside-out patches taken from cultured hippocampal neurons. Other unrelated peptides including dynorphin and somatostatin also caused a glycine-dependent enhancement of NMDA currents and depressed the currents in saturating concentrations of glycine. In contrast, a shortened analogue dynorphin (6-17), which lacks N-terminus glycine residues, and another peptide met-enkephalin were without effects on NMDA currents recorded in low concentrations of glycine. Our results suggest that neurotrophins and other peptides can serve as glycine-like ligands for the NMDA receptor.


2020 ◽  
Vol 318 (5) ◽  
pp. C991-C1004
Author(s):  
Jingyang Su ◽  
Qinghua Gao ◽  
Lifeng Yu ◽  
Xuanxuan Sun ◽  
Rui Feng ◽  
...  

Calmodulin (CaM) mutations are associated with congenital long QT (LQT) syndrome (LQTS), which may be related to the dysregulation of the cardiac-predominant Ca2+ channel isoform CaV1.2. Among various mutants, CaM-E141G was identified as a critical missense variant. However, the interaction of this CaM mutant with the CaV1.2 channel has not been determined. In this study, by utilizing a semiquantitative pull-down assay, we explored the interaction of CaM-E141G with CaM-binding peptide fragments of the CaV1.2 channel. Using the patch-clamp technique, we also investigated the electrophysiological effects of the mutant on CaV1.2 channel activity. We found that the maximum binding (Bmax) of CaM-E141G to the proximal COOH-terminal region, PreIQ-IQ, PreIQ, IQ, and NT (an NH2-terminal peptide) was decreased (by 17.71–59.26%) compared with that of wild-type CaM (CaM-WT). In particular, the Ca2+-dependent increase in Bmax became slower with the combination of CaM-E141G + PreIQ and IQ but faster in the case of NT. Functionally, CaM-WT and CaM-E141G at 500 nM Ca2+ decreased CaV1.2 channel activity to 24.88% and 55.99%, respectively, compared with 100 nM Ca2+, showing that the inhibitory effect was attenuated in CaM-E141G. The mean open time of the CaV1.2 channel was increased, and the number of blank traces with no channel opening was significantly decreased. Overall, CaM-E141G exhibits disrupted binding with the CaV1.2 channel and induces a flickering gating mode, which may result in the dysfunction of the CaV1.2 channel and, thus, the development of LQTS. The present study is the first to investigate the detailed binding properties and single-channel gating mode induced by the interaction of CaM-E141G with the CaV1.2 channel.


Sign in / Sign up

Export Citation Format

Share Document