The LQT-associated calmodulin mutant E141G induces disturbed Ca2+-dependent binding and a flickering gating mode of the CaV1.2 channel

2020 ◽  
Vol 318 (5) ◽  
pp. C991-C1004
Author(s):  
Jingyang Su ◽  
Qinghua Gao ◽  
Lifeng Yu ◽  
Xuanxuan Sun ◽  
Rui Feng ◽  
...  

Calmodulin (CaM) mutations are associated with congenital long QT (LQT) syndrome (LQTS), which may be related to the dysregulation of the cardiac-predominant Ca2+ channel isoform CaV1.2. Among various mutants, CaM-E141G was identified as a critical missense variant. However, the interaction of this CaM mutant with the CaV1.2 channel has not been determined. In this study, by utilizing a semiquantitative pull-down assay, we explored the interaction of CaM-E141G with CaM-binding peptide fragments of the CaV1.2 channel. Using the patch-clamp technique, we also investigated the electrophysiological effects of the mutant on CaV1.2 channel activity. We found that the maximum binding (Bmax) of CaM-E141G to the proximal COOH-terminal region, PreIQ-IQ, PreIQ, IQ, and NT (an NH2-terminal peptide) was decreased (by 17.71–59.26%) compared with that of wild-type CaM (CaM-WT). In particular, the Ca2+-dependent increase in Bmax became slower with the combination of CaM-E141G + PreIQ and IQ but faster in the case of NT. Functionally, CaM-WT and CaM-E141G at 500 nM Ca2+ decreased CaV1.2 channel activity to 24.88% and 55.99%, respectively, compared with 100 nM Ca2+, showing that the inhibitory effect was attenuated in CaM-E141G. The mean open time of the CaV1.2 channel was increased, and the number of blank traces with no channel opening was significantly decreased. Overall, CaM-E141G exhibits disrupted binding with the CaV1.2 channel and induces a flickering gating mode, which may result in the dysfunction of the CaV1.2 channel and, thus, the development of LQTS. The present study is the first to investigate the detailed binding properties and single-channel gating mode induced by the interaction of CaM-E141G with the CaV1.2 channel.

1994 ◽  
Vol 267 (4) ◽  
pp. C1036-C1044 ◽  
Author(s):  
Z. Fan ◽  
Y. Tokuyama ◽  
J. C. Makielski

The effect of intracellular acidification (low pHi) on open probability of the ATP-sensitive K+ (KATP) channel was examined in insulin-secretion cells using an inside-out configuration of the patch-clamp technique. In an insulin-secreting cell line beta-TC3, KATP single-channel currents (IKATP) were readily recorded in the absence of internal ATP. ATP (50 microM and 0.5 mM) dramatically decreased the channel activity. A step decrease of intracellular pH (pHi) from 7.4 to 6.7 or 6.3 in the presence of ATP gradually increased the channel activity. In addition, low pHi in the presence of ATP could partially restore channel activity lost in a process called "rundown." Kinetic analysis revealed a change in channel gating at low pHi with ATP. The bursting durations of IKATP at pHi 6.3 in the presence of ATP were significantly longer than those at pHi 7.4 in the absence of ATP. These results suggest that the increased channel activity at low pHi might have resulted from a mechanism involving an alteration of channel conformation. We also observed an inhibitory effect of low pHi on channel activity. However, the inhibitory effect was much more apparent at pHi 5.7 and was only partially reversible. The activation effect of low pHi on IKATP in the presence of ATP was also observed in acutely isolated rat islet cells and in another insulin-secretion cell line RINm5F, although the effect was weaker and was variable among experiments. We conclude that, as in frog skeletal muscle and cardiac muscle, an increase in channel activity at low pHi is one of the mechanisms underlying proton modulation of IKATP in insulin-secreting cells.


1997 ◽  
Vol 86 (4) ◽  
pp. 903-917 ◽  
Author(s):  
Beverley A. Orser ◽  
Peter S. Pennefather ◽  
John F. MacDonald

Background The N-methyl-D-aspartate (NMDA) subtype of glutamate receptor is blocked by ketamine, and this action likely contributes to ketamine's anesthetic and analgesic properties. Previous studies suggest that ketamine occludes the open channel by binding to a site located within the channel pore. This hypothesis was examined by investigating the effects of ketamine on single-channel currents from NMDA receptors. Methods The cell-attached and outside-out configurations of the patch clamp technique were used to study NMDA-activated currents recorded from cultured mouse hippocampal neurons. Results In cell-attached patches, NMDA evoked currents that had an apparent mean open time (tau o) of 3.26 ms. The probability of at least one channel being open (Po') was 0.058. The addition of ketamine (0.1 microM or 1 microM) to the pipette solution decreased Po' to 53% and 24% of control values, respectively. At 1 microM ketamine, this reduction was due to a decrease in both the frequency of channel opening and the mean open time (44% and 68% of control values, respectively). Ketamine did not influence channel conductance and no new components were required to fit the open- or closed-duration distributions. Ketamine (50 microM), applied outside the recording pipette, reduced the opening frequency of channels recorded in the cell attached configuration. This observation suggests that ketamine gained access to a binding site by diffusing across the hydrophobic cell membrane. In outside-out patches, ketamine potency was lower than that observed in cell-attached patches: 1 microM and 10 microM ketamine reduced Po' to 63% and 34% of control values, respectively, and this reduction was due primarily to a decrease in the frequency of channel opening with little change in mean open time. Conclusions These observations are consistent with a model whereby ketamine inhibits the NMDA receptor by two distinct mechanisms: (1) Ketamine blocks the open channel and thereby reduces channel mean open time, and (2) ketamine decreases the frequency of channel opening by an allosteric mechanism.


1996 ◽  
Vol 107 (1) ◽  
pp. 35-45 ◽  
Author(s):  
L G Palmer ◽  
G Frindt

The gating kinetics of apical membrane Na channels in the rat cortical collecting tubule were assessed in cell-attached and inside-out excised patches from split-open tubules using the patch-clamp technique. In patches containing a single channel the open probability (Po) was variable, ranging from 0.05 to 0.9. The average Po was 0.5. However, the individual values were not distributed normally, but were mainly < or = 0.25 or > or = 0.75. Mean open times and mean closed times were correlated directly and inversely, respectively, with Po. In patches where a sufficient number of events could be recorded, two time constants were required to describe the open-time and closed-time distributions. In most patches in which basal Po was < 0.3 the channels could be activated by hyperpolarization of the apical membrane. In five such patches containing a single channel hyperpolarization by 40 mV increased Po by 10-fold, from 0.055 +/- 0.023 to 0.58 +/- 0.07. This change reflected an increase in the mean open time of the channels from 52 +/- 17 to 494 +/- 175 ms and a decrease in the mean closed time from 1,940 +/- 350 to 336 +/- 100 ms. These responses, however, could not be described by a simple voltage dependence of the opening and closing rates. In many cases significant delays in both the activation by hyperpolarization and deactivation by depolarization were observed. These delays ranged from several seconds to several tens of seconds. Similar effects of voltage were seen in cell-attached and excised patches, arguing against a voltage-dependent chemical modification of the channel, such as a phosphorylation. Rather, the channels appeared to switch between gating modes. These switches could be spontaneous but were strongly influenced by changes in membrane voltage. Voltage dependence of channel gating was also observed under whole-cell clamp conditions. To see if mechanical perturbations could also influence channel kinetics or gating mode, negative pressures of 10-60 mm Hg were applied to the patch pipette. In most cases (15 out of 22), this maneuver had no significant effect on channel behavior. In 6 out of 22 patches, however, there was a rapid and reversible increase in Po when the pressure was applied. In one patch, there was a reversible decrease. While no consistent effects of pressure could be documented, membrane deformation could contribute to the variation in Po under some conditions.


2003 ◽  
Vol 2 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Stephen K. Roberts

ABSTRACT In contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the “filamentous” polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K+ channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa. The patch clamp technique was used to investigate the biophysical properties of the N. crassa K+ channel (NcTOKA) after heterologous expression of NcTOKA in yeast. NcTOKA mediated mainly time-dependent outward whole-cell currents, and the reversal potential of these currents indicated that it conducted K+ efflux. NcTOKA channel gating was sensitive to extracellular K+ such that channel activation was dependent on the reversal potential for K+. However, expression of NcTOKA was able to overcome the K+ auxotrophy of a yeast mutant missing the K+ uptake transporters TRK1 and TRK2, suggesting that NcTOKA also mediated K+ influx. Consistent with this, close inspection of NcTOKA-mediated currents revealed small inward K+ currents at potentials negative of EK. NcTOKA single-channel activity was characterized by rapid flickering between the open and closed states with a unitary conductance of 16 pS. NcTOKA was effectively blocked by extracellular Ca2+, verapamil, quinine, and TEA+ but was insensitive to Cs+, 4-aminopyridine, and glibenclamide. The physiological significance of NcTOKA is discussed in the context of its biophysical properties.


1997 ◽  
Vol 78 (4) ◽  
pp. 2231-2234 ◽  
Author(s):  
Guo Jun Liu ◽  
Barry W. Madsen

Liu, Guo Jun and Barry W. Madsen. PACAP38 modulates activity of NMDA receptors in cultured chick cortical neurons. J. Neurophysiol. 78: 2231–2234, 1997. The outside-out recording mode of the patch-clamp technique was used to study modulatory effects of pituitary adenylate cyclase-activating polypeptide (PACAP38) on N-methyl-d-aspartate (NMDA) receptor activity in cultured chick cortical neurons. Biphasic concentration-dependent effects of PACAP38 on channel opening frequency induced by NMDA (20 μM) and glycine (1 μM) were found, with low concentrations (0.5–2 nM) of PACAP38 increasing activity and higher concentrations (10–1,000 nM) causing inhibition. These effects were reversible, reduced with higher concentrations of glycine (2–10 μM) but not by 200 μM NMDA, and inhibited by 10 μM 7-chlorokynurenic acid. In addition, 1 μM PACAP6–38 (a PACAP antagonist) inhibited channel activity due to 20 μM NMDA and 1 μM glycine by 66%, and this inhibition was reduced to 13% in the additional presence of 2 nM PACAP38. These observations suggest thatPACAP38 has a direct modulatory effect on the NMDA receptor that is independent of intracellular second messengers and probably mediated through the glycine coagonist site(s).


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Niels Voigt ◽  
Ange Maguy ◽  
Yung-Hsin Yeh ◽  
Xiao-Yan Qi ◽  
Ursula Ravens ◽  
...  

Background: Although atrial tachycardia (AT) appears to promote agonist-independent constitutively active I K,ACh that increases susceptibility to AF, direct demonstration of dysregulated I K,ACh channel function is lacking. We studied AT effects on single I K,ACh channel activity in dog atria. Methods: I K,ACh channel activity was recorded with cell-attached patch clamp in isolated atrial myocytes of control (CTL) and AT (7 days, 400 min −1 ) dogs. Results : AT prolonged inducible AF duration from 44±22 to 413±167 s; N=9 dogs/gp, P<0.001. In the absence of cholinergic stimulation, single-channel openings with typical I K,ACh conductance and rectification were observed in CTL and AT (Figure ). AT produced prominent agonist-independent I K,ACh activity due to 7-fold increased opening frequency (f o ) and 10-fold increased open probability (P o ) vs CTL (P<0.01 for each), but unaltered open time and single channel conductance. With maximum I K,ACh activation (10 μm carbachol, CCh), f o was 38% lower, open time constant 25% higher, and P o and unitary conductance unchanged for AT vs CTL. The selective Kir3 blocker tertiapin (100 nM) reduced f o and P o by 48% and 51% (P<0.05 each) without altering other channel properties, confirming the identity of I K,ACh. Conclusions : AT produces prominent agonist-independent constitutive single-channel I K,ACh activity, providing a molecular basis for previously-observed AT-enhanced macroscopic I K,ACh , as well as associated AP-shortening and tertiapin-suppressible AF promotion. These results suggest an important role for constitutively active I K,ACh channels in AT-remodeling and support their interest as a potential novel AF-therapy target.


1998 ◽  
Vol 274 (4) ◽  
pp. L475-L484 ◽  
Author(s):  
Lucky Jain ◽  
Xi-Juan Chen ◽  
Lou Ann Brown ◽  
Douglas C. Eaton

We used the patch-clamp technique to study the effect of nitric oxide (NO) on a cation channel in rat type II pneumocytes [alveolar type II (AT II) cells]. Single-channel recordings from the apical surface of AT II cells in primary culture showed a predominant cation channel with a conductance of 20.6 ± 1.1 (SE) pS ( n = 9 cell-attached patches) and Na+-to-K+selectivity of 0.97 ± 0.07 ( n = 7 cell-attached patches). An NO donor, S-nitrosoglutathione (GSNO; 100 μM), inhibited the basal cation-channel activity by 43% [open probability ( P o), control 0.28 ± 0.05 vs. GSNO 0.16 ± 0.03; P < 0.001; n = 16 cell-attached patches], with no significant change in the conductance. GSNO reduced the P o by reducing channel mean open and increasing mean closed times. GSNO inhibition was reversed by washout. The inhibitory effect of NO was confirmed by using a second donor of NO, S-nitroso- N-acetylpenicillamine (100 μM; P o, control 0.53 ± 0.05 vs. S-nitroso- N-acetylpenicillamine 0.31 ± 0.04; −42%; P < 0.05; n = 5 cell-attached patches). The GSNO effect was blocked by methylene blue (a blocker of guanylyl cyclase; 100 μM), suggesting a role for cGMP. The permeable analog of cGMP, 8-bromo-cGMP (8-BrcGMP; 1 mM), inhibited the cation channel in a manner similar to GSNO ( P o, control 0.38 ± 0.06 vs. 8-BrcGMP 0.09 ± 0.02; P < 0.05; n = 7 cell-attached patches). Pretreatment of cells with 1 μM KT-5823 (a blocker of protein kinase G) abolished the inhibitory effect of GSNO. The NO inhibition of channels was not due to changes in cell viability. Intracellular cGMP was found to be elevated in AT II cells treated with NO (control 13.4 ± 3.6 vs. GSNO 25.4 ± 4.1 fmol/ml; P < 0.05; n = 6 cell-attached patches). We conclude that NO suppresses the activity of an Na+-permeant cation channel on the apical surface of AT II cells. This action appears to be mediated by a cGMP-dependent protein kinase.


1994 ◽  
Vol 267 (4) ◽  
pp. F599-F605 ◽  
Author(s):  
W. H. Wang

We have used the patch-clamp technique to study the apical K+ channels in the thick ascending limb (TAL) of the rat kidney. Two types of K+ channels, a low-conductance and an intermediate-conductance K+ channel, were identified in both cell-attached and inside-out patches. We confirmed the previously reported intermediate-conductance K+ channel (72 pS), which is inhibited by millimolar cell ATP, acidic pH, Ba2+, and quinidine (4). We now report a second K+ channel in apical membrane of the TAL. The slope conductance of this low-conductance K+ channel is 30 pS, and its open probability is 0.80 in cell-attached patches. This channel is not voltage dependent, and application of 2 mM ATP in the bath inhibits channel activity in inside-out patches. In addition, 250 microM glyburide, an ATP-sensitive K+ channel inhibitor, blocks channel activity, whereas the same concentration of glyburide has no inhibitory effect on the 72-pS K+ channel. Channel activity of the 30-pS K+ channel decreases rapidly upon excision of patches (channel run down). Application of 0.1 mM ATP and the catalytic subunit of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) restores channel activity. Furthermore, addition of 0.1 mM 8-(4-chlorophenylthio)-cAMP or 50-100 pM vasopressin in the cell-attached patches increases channel activity. In conclusion, two types of K+ channels are present in the apical membrane of TAL of rat kidney, and PKA plays an important role in modulation of the low-conductance K+ channel activity.


2002 ◽  
Vol 283 (3) ◽  
pp. F407-F414 ◽  
Author(s):  
Rui-Min Gu ◽  
Wen-Hui Wang

We have used the patch-clamp technique to study the effect of arachidonic acid (AA) on the basolateral K channels in the medullary thick ascending limb (mTAL) of rat kidney. An inwardly rectifying 50-pS K channel was identified in cell-attached and inside-out patches in the basolateral membrane of the mTAL. The channel open probability ( P o) was 0.51 at the spontaneous cell membrane potential and decreased to 0.25 by 30 mV hyperpolarization. The addition of 5 μM AA decreased channel activity, identified as NP o, from 0.58 to 0.08 in cell-attached patches. The effect of AA on the 50-pS K channel was specific because 10 μM cis-11,14,17-eicosatrienoic acid had no significant effect on channel activity. To determine whether the effect of AA was mediated by AA per se or by its metabolites, we examined the effect of AA on channel activity in the presence of indomethacin, an inhibitor of cyclooxygenase, or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), an inhibitor of cytochrome P-450 monooxygenase. Inhibition of cyclooxygenase increased channel activity from 0.54 to 0.9. However, indomethacin did not abolish the inhibitory effect of AA on the 50-pS K channel. In contrast, inhibition of cytochrome P-450 metabolism not only increased channel activity from 0.49 to 0.83 but also completely abolished the effect of AA. Moreover, addition of DDMS can reverse the inhibitory effect of AA on channel activity. The notion that the effect of AA was mediated by cytochrome P-450-dependent metabolites of AA is also supported by the observation that addition of 100 nM of 20-hydroxyeicosatetraenoic acid, a main metabolite of AA in the mTAL, can mimic the effect of AA. We conclude that AA inhibits the 50-pS K channel in the basolateral membrane of the mTAL and that the effect of AA is mainly mediated by cytochrome P-450-dependent metabolites of AA.


1991 ◽  
Vol 260 (4) ◽  
pp. H1390-H1393 ◽  
Author(s):  
K. B. Walsh ◽  
J. P. Arena ◽  
W. M. Kwok ◽  
L. Freeman ◽  
R. S. Kass

When the patch-clamp technique was used, a slowly activating, time-dependent outward current was identified in both cell-attached and excised membrane patches obtained from guinea pig ventricular myocytes. This macroscopic patch current was present in approximately 50% of patches studied and could be observed both in the presence and absence of unitary single channel activity (i.e., ATP-sensitive K+ channels). The time course of activation of the patch current resembled that of the whole cell delayed-rectifier K+ current (IK) recorded under similar ionic conditions, and the patch current and IK were activated over a similar membrane potential range. The time-dependent patch current could be eliminated when the Nernst potential for K+ equaled that of the pulse voltage. The patch current was inhibited by external addition of the tertiary ammonium compound LY 97241 (50 microM) and was augmented after internal application of the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase (500 nM). Deactivating tail currents with kinetics similar to those of IK could be recorded to cell-attached and excised patches. Unitary single channel events underlying the time-dependent patch current could not be resolved despite various attempts to increase single channel conductance. Thus our results suggest that a major component of delayed rectification in guinea pig ventricular cells is due to the activity of a high-density, extremely low conductance K+ channel.


Sign in / Sign up

Export Citation Format

Share Document