Neurotrophin Modulation of NMDA Receptors in Cultured Murine and Isolated Rat Neurons

1997 ◽  
Vol 78 (5) ◽  
pp. 2363-2371 ◽  
Author(s):  
C. R. Jarvis ◽  
Z.-G. Xiong ◽  
J. R. Plant ◽  
D. Churchill ◽  
W.-Y. Lu ◽  
...  

Jarvis, C. R., Z.-G. Xiong, J. R. Plant, D. Churchill, W.-Y. Lu, B. A. MacVicar, and J. F. MacDonald. Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons. J. Neurophysiol. 78: 2363–2371, 1997. Patch-clamp and calcium imaging techniques were used to assess the acute effects of the neurotrophins, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF), on the responses of cultured and acutely isolated hippocampal and cultured striatal neurons to the glutamate receptor agonist N-methyl-d-aspartic acid (NMDA). The effects of BDNF on NMDA-activated currents were examined in greater detail. Currents evoked by NMDA, and the accompanying changes in intracellular calcium, were enhanced by low concentrations of the neurotrophins (1–20 ng/ml). The potentiation by the neurotrophins was rapid in onset and offset (<1 s). The neurotrophins also reduced desensitization of these currents in most cells. The enhancement of NMDA-activated currents by BDNF was observed using both perforated and whole cell patch recording techniques and could be demonstrated in outside-out patches. Furthermore, its effects were not attenuated by pretreatment with the protein kinase inhibitors genistein or 1-(5-isoquinolynesulfony)2-methylpiperazine (H7). Therefore, the actions of BDNF do not appear to be mediated by phosphorylation. Similar enhancements were observed with NT-3 and NT-4 and with NGF despite the fact that hippocampal neurons lack TrkA receptors. All together this evidence suggests that the enhancement of NMDA-evoked currents is unlikely to be mediated through the activation of growth factor receptors. Modulation of NMDA responses by BDNF was dependent on the concentration of extracellular glycine. The most pronounced potentiation by BDNF was observed at low concentrations, whereas no potentiation was observed in saturating concentrations of glycine, suggesting that BDNF may have increased the affinity of the NMDA receptor for glycine. However, the competitive glycine-site antagonist 7-chloro-kynurenic acid blocked the enhancement by BDNF without shifting the dose-inhibition relationship for this antagonist, and Mg2+ consistently depressed the potentiation of NMDA-evoked currents by BDNF, indicating that BDNF does not alter glycine affinity. BDNF also reversibly increased the probability of opening of NMDA channels recorded from outside-out patches taken from cultured hippocampal neurons. Other unrelated peptides including dynorphin and somatostatin also caused a glycine-dependent enhancement of NMDA currents and depressed the currents in saturating concentrations of glycine. In contrast, a shortened analogue dynorphin (6-17), which lacks N-terminus glycine residues, and another peptide met-enkephalin were without effects on NMDA currents recorded in low concentrations of glycine. Our results suggest that neurotrophins and other peptides can serve as glycine-like ligands for the NMDA receptor.

2000 ◽  
Vol 83 (1) ◽  
pp. 616-620 ◽  
Author(s):  
Kenneth R. Tovar ◽  
Kathleen Sprouffske ◽  
Gary L. Westbrook

The N-methyl-d-aspartate (NMDA) receptor has been implicated in the formation of synaptic connections. To investigate the role of the ε2 (NR2B) NMDA receptor subunit, which is prominently expressed during early development, we used neurons from mice lacking this subunit. Although ε2−/− mice die soon after birth, we examined whether NMDA receptor targeting to the postsynaptic membrane was dependent on the ε2 subunit by rescuing hippocampal neurons from these mice and studying them in autaptic cultures. In voltage-clamp recordings, excitatory postsynaptic currents (EPSCs) from ε2−/− neurons expressed an NMDA receptor–mediated EPSC that was apparent as soon as synaptic activity developed. However, compared with wild-type neurons, NMDA receptor–mediated EPSC deactivation kinetics were much faster and were less sensitive to glycine, but were blocked by Mg2+ or AP5. Whole cell currents from ε2−/− neurons were also more sensitive to block by low concentrations of Zn2+ and much less sensitive to the ε2-specific antagonist ifenprodil than wild-type currents. The rapid NMDA receptor–mediated EPSC deactivation kinetics and the pharmacological profile from ε2−/−neurons are consistent with the expression of ζ1/ε1 diheteromeric receptors in excitatory hippocampal neurons from mice lacking the ε2 subunit. Thus ε1 can substitute for the ε2 subunit at synapses and ε2 is not required for targeting of NMDA receptors to the postsynaptic membrane.


1996 ◽  
Vol 76 (5) ◽  
pp. 3415-3424 ◽  
Author(s):  
K. S. Wilcox ◽  
R. M. Fitzsimonds ◽  
B. Johnson ◽  
M. A. Dichter

1. Although glycine has been identified as a required coagonist with glutamate at N-methyl-D-aspartate (NMDA) receptors, the understanding of glycine's role in excitatory synaptic neurotransmission is quite limited. In the present study, we used the whole cell patch-clamp technique to examine the ability of glycine to regulate current flow through synaptic NMDA receptors at excitatory synapses between cultured hippocampal neurons and in acutely isolated hippocampal slices. 2. These studies demonstrate that the glycine modulatory site on the synaptic NMDA receptor is not saturated under baseline conditions and that increased glycine concentrations can markedly increased NMDA-receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal neurons in both dissociated cell culture and in slice. Saturation of the maximal effect of glycine takes place at different concentrations for different cells in culture, suggesting the presence of heterogenous NMDA receptor subunit compositions. 3. Bath-applied glycine had no effect on the time course of EPSCs in either brain slice or culture, indicating that desensitization of the NMDA receptor is not prevented by glycine over the time course of an EPSC. 4. When extracellular glycine concentration is high, all miniature EPSCs recorded in the cultured hippocampal neurons contained NMDA components, indicating that segregation of non-NMDA receptors at individual synaptic boutons does not occur.


1997 ◽  
Vol 78 (4) ◽  
pp. 2231-2234 ◽  
Author(s):  
Guo Jun Liu ◽  
Barry W. Madsen

Liu, Guo Jun and Barry W. Madsen. PACAP38 modulates activity of NMDA receptors in cultured chick cortical neurons. J. Neurophysiol. 78: 2231–2234, 1997. The outside-out recording mode of the patch-clamp technique was used to study modulatory effects of pituitary adenylate cyclase-activating polypeptide (PACAP38) on N-methyl-d-aspartate (NMDA) receptor activity in cultured chick cortical neurons. Biphasic concentration-dependent effects of PACAP38 on channel opening frequency induced by NMDA (20 μM) and glycine (1 μM) were found, with low concentrations (0.5–2 nM) of PACAP38 increasing activity and higher concentrations (10–1,000 nM) causing inhibition. These effects were reversible, reduced with higher concentrations of glycine (2–10 μM) but not by 200 μM NMDA, and inhibited by 10 μM 7-chlorokynurenic acid. In addition, 1 μM PACAP6–38 (a PACAP antagonist) inhibited channel activity due to 20 μM NMDA and 1 μM glycine by 66%, and this inhibition was reduced to 13% in the additional presence of 2 nM PACAP38. These observations suggest thatPACAP38 has a direct modulatory effect on the NMDA receptor that is independent of intracellular second messengers and probably mediated through the glycine coagonist site(s).


1996 ◽  
Vol 76 (5) ◽  
pp. 3038-3047 ◽  
Author(s):  
I. Cavus ◽  
T. Teyler

1. The effects of protein kinase inhibitors on N-methyl-D-aspartate (NMDA)-receptor-mediated, voltage-dependent calcium channel (VDCC)-mediated, and 100-Hz long-term potentiation (LTP) were studied in area CA1 of rat hippocampal slices. 2. A 25-Hz tetanus induced a quickly developing potentiation that was blocked by the NMDA antagonist D,L-2-amino-5-phosphonovaleric acid (APV) and was not affected by the L-type VDCC inhibitor nifedipine, suggesting that it was mediated by NMDA receptors (NMDA-LTP). 3. Application of a 200-Hz tetanus in APV induced a slowly developing NMDA-receptor-independent potentiation that was blocked by nifedipine and thus named VDCC-LTP. NMDA- and VDCC-LTP reached comparable magnitudes despite their different induction parameters and developmental kinetics. 4. Bath perfusion of the broad-spectrum serine/threonine kinase inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) blocked NMDA-LTP but not VDCC-LTP, whereas the tyrosine kinase inhibitors genistein and lavendustin A blocked VDCC-LTP but not NMDA-LTP. These results suggest a differential involvement of H-7-sensitive serine/threonine kinases and tyrosine kinases in the two forms of LTP. 5. Tetanization of 200 Hz in control media resulted in a compound potentiation twice as large as NMDA- or VDCC-LTP, implying that the two forms of LTP did not facilitate or reduce each other's expression. The often-used 100-Hz tetanus (1 s twice) induced a potentiation that was comparable in size with the 200-Hz compound LTP. Nifedipine, genistein, and lavendustin A reduced the 100-Hz LTP by approximately 50%, suggesting that this LTP is also a compound potentiation consisting of NMDA- and VDCC-mediated components and their corresponding signal transduction pathways.


1991 ◽  
Vol 121 (1-2) ◽  
pp. 259-262 ◽  
Author(s):  
Henry Matthies ◽  
Thomas Behnisch ◽  
Hiroshi Kase ◽  
Hansjürgen Matthies ◽  
Klaus G. Reymann

2000 ◽  
Vol 84 (3) ◽  
pp. 1573-1587 ◽  
Author(s):  
Jeffrey R. Cottrell ◽  
Gilles R. Dubé ◽  
Christophe Egles ◽  
Guosong Liu

Postsynaptic differentiation during glutamatergic synapse formation is poorly understood. Using a novel biophysical approach, we have investigated the distribution and density of functional glutamate receptors and characterized their clustering during synaptogenesis in cultured hippocampal neurons. We found that functional α-amino-3-hydroxy-5-methyl-4-isoxazolpropionate (AMPA) and N-methyl-d-aspartate (NMDA) receptors are evenly distributed in the dendritic membrane before synaptogenesis with an estimated density of 3 receptors/μm2. Following synaptogenesis, functional AMPA and NMDA receptors are clustered at synapses with a density estimated to be on the order of 104 receptors/μm2, which corresponds to ∼400 receptors/synapse. Meanwhile there is no reduction in the extrasynaptic receptor density, which indicates that the aggregation of the existing pool of receptors is not the primary mechanism of glutamate receptor clustering. Furthermore our data suggest that the ratio of AMPA to NMDA receptor density may be regulated to be close to one in all dendritic locations. We also demonstrate that synaptic AMPA and NMDA receptor clusters form with a similar time course during synaptogenesis and that functional AMPA receptors cluster independently of activity and glutamate receptor activation, including following the deletion of the NMDA receptor NR1 subunit. Thus glutamate receptor activation is not necessary for the insertion, clustering, and activation of functional AMPA receptors during synapse formation, and this process is likely controlled by an activity-independent signal.


Sign in / Sign up

Export Citation Format

Share Document