Characterization of Gating and Peptide Block of mSlo, a Cloned Calcium-Dependent Potassium Channel

1997 ◽  
Vol 78 (6) ◽  
pp. 2937-2950 ◽  
Author(s):  
Deirdre A. Sullivan ◽  
Mats H. Holmqvist ◽  
Irwin B. Levitan

Sullivan, Deirdre A., Mats H. Holmqvist, and Irwin B. Levitan. Characterization of gating and peptide block of mSlo, a cloned calcium-dependent potassium channel. J. Neurophysiol. 78: 2937–2950, 1997. The 20 amino acid Shaker inactivation peptide blocks mSlo, a cloned calcium-dependent potassium channel. Changing the charge and degree of hydrophobicity of the peptide alters its blocking kinetics. A “triple mutant” mSlo channel was constructed in which three amino acids (T256, S259, and L262), equivalent to those identified as part of the peptide's receptor site in the S4–S5 cytoplasmic loop region of the Shaker channel, were mutated simultaneously to alanines. These mutations produce only limited changes in the channel's susceptibility to block by a series of peptides of varying charge and hydrophobicity but do alter channel gating. The triple mutant channel shows a significant shift in its calcium-activation curve as compared with the wild-type channel. Analysis of the corresponding single amino acid mutations shows that mutation at position L262 causes the most dramatic change in mSlo gating. These results suggest that the three amino acids mutated in the mSlo S4–S5 loop may contribute to, but are not essential for, peptide binding. On the other hand, they do play a critical role in the channel's calcium-sensing mechanism.

1999 ◽  
Vol 337 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Lulu A. BRIX ◽  
Ronald G. DUGGLEBY ◽  
Andrea GAEDIGK ◽  
Michael E. McMANUS

Human aryl sulphotransferase (HAST) 1, HAST3, HAST4 and HAST4v share greater than 90% sequence identity, but vary markedly in their ability to catalyse the sulphonation of dopamine and p-nitrophenol. In order to investigate the amino acid(s) involved in determining differing substrate specificities of HASTs, a range of chimaeric HAST proteins were constructed. Analysis of chimaeric substrate specificities showed that enzyme affinities are mainly determined within the N-terminal end of each HAST protein, which includes two regions of high sequence divergence, termed Regions A (amino acids 44–107) and B (amino acids 132–164). To investigate the substrate-binding sites of HASTs further, site-directed mutagenesis was performed on HAST1 to change 13 individual residues within these two regions to the HAST3 equivalent. A single amino acid change in HAST1 (A146E) was able to change the specificity for p-nitrophenol to that of HAST3. The substrate specificity of HAST1 towards dopamine could not be converted into that of HAST3 with a single amino acid change. However, compared with wild-type HAST1, a number of the mutations resulted in interference with substrate binding, as shown by elevated Ki values towards the co-substrate 3´-phosphoadenosine 5´-phosphosulphate, and in some cases loss of activity towards dopamine. These findings suggest that a co-ordinated change of multiple amino acids in HAST proteins is needed to alter the substrate specificities of these enzymes towards dopamine, whereas a single amino acid at position 146 determines p-nitrophenol affinity. A HAST1 mutant was constructed to express a protein with four amino acids deleted (P87–P90). These amino acids were hypothesized to correspond to a loop region in close proximity to the substrate-binding pocket. Interestingly, the protein showed substrate specificities more similar to wild-type HAST3 than HAST1 and indicates an important role of these amino acids in substrate binding.


2021 ◽  
Author(s):  
Chengsong Zhao ◽  
Réjane Pratelli ◽  
Shi Yu ◽  
Brett Shelley ◽  
Eva Collakova ◽  
...  

AbstractAmino acid transporters play a critical role in distributing amino acids within the cell compartments and between the plant organs. Despite this importance, relatively few amino acid transporter genes have been characterized and their role elucidated with certainty. Two main families of proteins encode amino acid transporters in plants: the Amino Acid-Polyamine-Organocation superfamily, containing mostly importers, and the Usually Multiple Acids Move In and out Transporter family, apparently encoding exporters, totaling about 100 genes in Arabidopsis alone. Knowledge on UMAMITs is scarce, focused on six Arabidopsis genes and a handful of genes from other species. To get insight into the role of the members of this family and provide data to be used for future characterization, we studied the evolution of the UMAMITs in plants, and determined the functional properties, the structure, and the localization of the 44 Arabidopsis UMAMITs. Our analysis showed that the AtUMAMIT are essentially localized at the tonoplast or the plasma membrane, and that most of them are able to export amino acids from the cytosol, confirming a role in intra- and inter-cellular amino acid transport. As an example, this set of data was used to hypothesize the role of a few AtUMAMITs in the plant and the cell.


2018 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti ◽  
Chandra Kanth P. ◽  
Dhruvi Shah ◽  
Vivek Shinh Kshatriya ◽  
...  

We report for the very first time self-assembly of Cysteine and Methionine to discrenible strucutres under neutral condition. To get insights into the structure formation, thioflavin T and Congo red binding assays were done which revealed that aggregates may not have amyloid like characteristics. The nature of interactions which lead to such self-assemblies was purported by coincubating assemblies in urea and mercaptoethanol. Further interaction of aggregates with short amyloidogenic dipeptide diphenylalanine (FF) was assessed. While cysteine aggregates completely disrupted FF fibres, methionine albeit triggered fibrillation. The cytotoxicity assays of cysteine and methionine structures were performed on Human Neuroblastoma IMR-32 cells which suggested that aggregates are not cytotoxic in nature and thus, may not have amyloid like etiology. The results presented in the manuscript are striking, since to the best of our knowledge,this is the first report which demonstrates that even non-aromatic amino acids (cysteine and methionine) can undergo spontaneous self-assembly to form ordered aggregates.


2020 ◽  
Vol 26 (18) ◽  
pp. 2096-2101
Author(s):  
Giuseppe Manfroni ◽  
Francesco Ragonese ◽  
Lorenzo Monarca ◽  
Andrea Astolfi ◽  
Loretta Mancinelli ◽  
...  

The human intermediate conductance calcium-activated potassium channel, KCa3.1, is involved in several pathophysiological conditions playing a critical role in cell secretory machinery and calcium signalling. The recent cryo-EM analysis provides new insights for understanding the modulation by both endogenous and pharmacological agents. A typical feature of this channel is the low open probability in saturating calcium concentrations and its modulation by potassium channel openers (KCOs), such as benzo imidazolone 1-EBIO, without changing calcium-dependent activation. In this paper, we proposed a model of KCOs action in the modulation of channel activity. The KCa3.1 channel has a very rich pharmacological profile with several classes of molecules that selectively interact with different binding sites of the channel. Among them, benzo imidazolones can be openers (positive modulators such as 1-EBIO, DC-EBIO) or blockers (negative modulators such as NS1619). Through computation modelling techniques, we identified the 1,4-benzothiazin-3-one as a promising scaffold to develop new KCa3.1 channel modulators. Further studies are needed to explore the potential use of 1-4 benzothiazine- 3-one in KCa3.1 modulation and its pharmacological application.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Abstract According to the amino acid composition of natural proteins, it could be expected that all possible sequences of three or four amino acids will occur at least once in large protein datasets purely by chance. However, in some species or cellular context, specific short amino acid motifs are missing due to unknown reasons. We describe these as Avoided Motifs, short amino acid combinations missing from biological sequences. Here we identify 209 human and 154 bacterial Avoided Motifs of length four amino acids, and discuss their possible functionality according to their presence in other species. Furthermore, we determine two Avoided Motifs of length three amino acids in human proteins specifically located in the cytoplasm, and two more in secreted proteins. Our results support the hypothesis that the characterization of Avoided Motifs in particular contexts can provide us with information about functional motifs, pointing to a new approach in the use of molecular sequences for the discovery of protein function.


2015 ◽  
Vol 24 (4) ◽  
pp. 197-205
Author(s):  
Dwi Wulandari ◽  
Lisnawati Rachmadi ◽  
Tjahjani M. Sudiro

Background: E6 and E7 are oncoproteins of HPV16. Natural amino acid variation in HPV16 E6 can alter its carcinogenic potential. The aim of this study was to analyze phylogenetically E6 and E7 genes and proteins of HPV16 from Indonesia and predict the effects of single amino acid substitution on protein function. This analysis could be used to reduce time, effort, and research cost as initial screening in selection of protein or isolates to be tested in vitro or in vivo.Methods: In this study, E6 and E7 gene sequences were obtained from 12 samples of  Indonesian isolates, which  were compared with HPV16R (prototype) and 6 standard isolates in the category of European (E), Asian (As), Asian-American (AA), African-1 (Af-1), African-2 (Af-2), and North American (NA) branch from Genbank. Bioedit v.7.0.0 was used to analyze the composition and substitution of single amino acids. Phylogenetic analysis of E6 and E7 genes and proteins was performed using Clustal X (1.81) and NJPLOT softwares. Effects of single amino acid substitutions on protein function of E6 and E7 were analysed by SNAP.Results: Java variants and isolate ui66* belonged to European branch, while the others belonged to Asian and African branches. Twelve changes of amino acids were found in E6 and one in E7 proteins. SNAP analysis showed two non neutral mutations, i.e. R10I and C63G in E6 proteins. R10I mutations were found in Af-2 genotype (AF472509) and Indonesian isolates (Af2*), while C63G mutation was found only in Af2*.Conclusion: E6 proteins of HPV16 variants were more variable than E7. SNAP analysis showed that only E6 protein of African-2 branch had functional differences compared to HPV16R.


1988 ◽  
Vol 8 (3) ◽  
pp. 1247-1252 ◽  
Author(s):  
E Lazar ◽  
S Watanabe ◽  
S Dalton ◽  
M B Sporn

To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor.


1984 ◽  
Vol 62 (5) ◽  
pp. 276-279 ◽  
Author(s):  
C. H. Lin ◽  
W. Chung ◽  
K. P. Strickland ◽  
A. J. Hudson

An isozyme of S-adenosylmethionine synthetase has been purified to homogeneity by ammonium sulfate fractionation, DEAE-cellulose column chromatography, and gel filtration on a Sephadex G-200 column. The purified enzyme is very unstable and has a molecular weight of 120 000 consisting of two identical subunits. Amino acid analysis on the purified enzyme showed glycine, glutamate, and aspartate to be the most abundant and the aromatic amino acids to be the least abundant. It possesses tripolyphosphatase activity which can be stimulated five to six times by S-adenosylmethionine (20–40 μM). The findings support the conclusion that an enzyme-bound tripolyphosphate is an obligatory intermediate in the enzymatic synthesis of S-adenosylmethionine from ATP and methionine.


Author(s):  
Akito Kawai ◽  
Masahiro Suzuki ◽  
Kentaro Tsukamoto ◽  
Yusuke Minato ◽  
Yohei Doi

Post-translational methylation of the A site of 16S rRNA at position A1408 leads to pan-aminoglycoside resistance encompassing both 4,5- and 4,6-disubstituted 2-deoxystreptamine (DOS) aminoglycosides. To date, NpmA is the only acquired enzyme with such function. Here, we present function and structure of NpmB1 whose sequence was identified in Escherichia coli genomes registered from the United Kingdom. NpmB1 possesses 40% amino acid identity with NpmA1 and confers resistance to all clinically relevant aminoglycosides including 4,5-DOS agents. Phylogenetic analysis of NpmB1 and NpmB2, its single amino acid variant, revealed that the encoding gene was likely acquired by E. coli from a soil bacterium. The structure of NpmB1 suggests that it requires a structural change of the β6/7 linker in order to bind to 16S rRNA. These findings establish NpmB1 and NpmB2 as the second group of acquired pan-aminoglycoside resistance 16S rRNA methyltransferases.


1992 ◽  
Vol 12 (5) ◽  
pp. 2372-2382
Author(s):  
K M Arndt ◽  
S L Ricupero ◽  
D M Eisenmann ◽  
F Winston

A mutation in the gene that encodes Saccharomyces cerevisiae TFIID (SPT15), which was isolated in a selection for mutations that alter transcription in vivo, changes a single amino acid in a highly conserved region of the second direct repeat in TFIID. Among eight independent spt15 mutations, seven cause this same amino acid change, Leu-205 to Phe. The mutant TFIID protein (L205F) binds with greater affinity than that of wild-type TFIID to at least two nonconsensus TATA sites in vitro, showing that the mutant protein has altered DNA binding specificity. Site-directed mutations that change Leu-205 to five different amino acids cause five different phenotypes, demonstrating the importance of this amino acid in vivo. Virtually identical phenotypes were observed when the same amino acid changes were made at the analogous position, Leu-114, in the first repeat of TFIID. Analysis of these mutations and additional mutations in the most conserved regions of the repeats, in conjunction with our DNA binding results, suggests that these regions of the repeats play equivalent roles in TFIID function, possibly in TATA box recognition.


Sign in / Sign up

Export Citation Format

Share Document