A Relative Energy Failure Is Associated With Low-Mg2+ But Not With 4-Aminopyridine Induced Seizure-Like Events in Entorhinal Cortex

1999 ◽  
Vol 81 (1) ◽  
pp. 399-403 ◽  
Author(s):  
S. Schuchmann ◽  
K. Buchheim ◽  
H. Meierkord ◽  
U. Heinemann

Schuchmann, S., K. Buchheim, H. Meierkord, and U. Heinemann. A relative energy failure is associated with low-Mg2+ but not with 4-aminopyridine induced seizure-like events in entorhinal cortex. J. Neurophysiol. 81: 399–403, 1999. During seizure-like events (SLEs), intracellular Ca2+ concentration ([Ca2+]i) increases causing depolarization of the mitochondrial membrane and subsequent intramitochondrial accumulation of Ca2+. Mitochondrial depolarization results in an interruption of oxidative phosphorylation and increase in reactive oxygen species. Calcium activates enzymes of the citrate cycle. A characteristic feature of the low-Mg2+–induced SLEs is that they are transformed to a late activity refractory to anticonvulsant drugs, which may be regarded as a model system of difficult to treat status epilepticus. In contrast, 4-aminopyridine (4-AP)–induced activity rarely evolves to such late activity. The autofluorescence of NAD(P)H was used to monitor changes in cellular energy metabolism in the entorhinal cortex in two in vitro models of focal epilepsy. During repetitive 4-AP–induced SLEs there was a short decrease followed by a long-lasting overshoot of the NAD(P)H signal. This sequence remained unaltered during recurring SLEs. In contrast, during recurrent low-Mg2+–induced SLEs, the brief initial NADH signal reduction was unchanged but the following overshoot of NADH displayed a continuous decrease. This indicates a relative energy failure, which may contribute to the transformation to late activity in the low-Mg2+ model.

1991 ◽  
Vol 19 (1) ◽  
pp. 71-76
Author(s):  
Mariarosa Perotti ◽  
Filippo Taddei ◽  
Francesca Mirabelli ◽  
Giorgio Bellomo

Isolated rat thymocytes treated with methylprednisolone (MPS), cultured human synovial (McCoy's) cells exposed to cold shock and human mammary adenocarcinoma (BT-20) cells treated with Tumour Necrosis Factor (TNF), all showed DNA fragmentation and the morphological and biochemical features of cell death characteristic of a process known as apoptosis. DNA fragmentation in MPS-treated thymocytes and in cold shock-exposed McCoy's cells was preceded by a marked increase in cytosolic free Ca2+ concentration resulting either from a sustained influx of Ca2+ from the extracellular medium or from the release of Ca2+ from intracellular pools. On the other hand, in TNF-treated BT-20 cells, DNA fragmentation was not associated with any early, marked increase in the cytosolic free Ca2+ level. In all three models, however, DNA fragmentation was efficiently prevented by intracellular Ca2+ chelators, calmodulin inhibitors and activators of protein kinase C (PKC). These results suggest that the activation of common mechanisms involving Ca2+ and PKC may be essential for the development of apoptosis.


2014 ◽  
Vol 226 (06) ◽  
Author(s):  
D William ◽  
M Linnebacher ◽  
CF Classen

Author(s):  
Kavitha K ◽  
Asha S ◽  
Hima Bindu T.V.L ◽  
Vidyavathi M

The safety and efficacy of a drug is based on its metabolism or metabolite formed. The metabolism of drugs can be studied by different in vitro models, among which microbial model became popular. In the present study, eight microbes were screened for their ability to metabolize phenobarbital in a manner comparable to humans with a model to develop alternative systems to study human drug metabolism. Among the different microbes screened, a filamentous fungi Rhizopus stolonifer metabolized phenobarbital to its metabolite which is used for further pharmacological and toxicological studies. The transformation of phenobarbital was identified by high- performance liquid chromatography (HPLC). Interestingly, Rhizopus stolonifer sample showed an extra metabolite peak at 3.11min. compared to its controls. The influence of different carbon sources in media used for growth of fungus, on metabolite production was studied, to find its effect in production of metabolite as the carbon source may influence the growth of the cell.


2020 ◽  
Vol 27 (29) ◽  
pp. 4778-4788 ◽  
Author(s):  
Victoria Heredia-Soto ◽  
Andrés Redondo ◽  
José Juan Pozo Kreilinger ◽  
Virginia Martínez-Marín ◽  
Alberto Berjón ◽  
...  

Sarcomas are tumours of mesenchymal origin, which can arise in bone or soft tissues. They are rare but frequently quite aggressive and with a poor outcome. New approaches are needed to characterise these tumours and their resistance mechanisms to current therapies, responsible for tumour recurrence and treatment failure. This review is focused on the potential of three-dimensional (3D) in vitro models, including multicellular tumour spheroids (MCTS) and organoids, and the latest data about their utility for the study on important properties for tumour development. The use of spheroids as a particularly valuable alternative for compound high throughput screening (HTS) in different areas of cancer biology is also discussed, which enables the identification of new therapeutic opportunities in commonly resistant tumours.


2019 ◽  
Vol 24 (45) ◽  
pp. 5367-5374 ◽  
Author(s):  
Xiaoyun Li ◽  
Seyed M. Moosavi-Basri ◽  
Rahul Sheth ◽  
Xiaoying Wang ◽  
Yu S. Zhang

The role of endovascular interventions has progressed rapidly over the past several decades. While animal models have long-served as the mainstay for the advancement of this field, the use of in vitro models has become increasingly widely adopted with recent advances in engineering technologies. Here, we review the strategies, mainly including bioprinting and microfabrication, which allow for fabrication of biomimetic vascular models that will potentially serve to supplement the conventional animal models for convenient investigations of endovascular interventions. Besides normal blood vessels, those in diseased states, such as thrombosis, may also be modeled by integrating cues that simulate the microenvironment of vascular disorders. These novel engineering strategies for the development of biomimetic in vitro vascular structures will possibly enable unconventional means of studying complex endovascular intervention problems that are otherwise hard to address using existing models.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


Sign in / Sign up

Export Citation Format

Share Document