Antagonistic Effects of Phentolamine and Octopamine on Rhythmic Motor Output of Crayfish Thoracic Ganglia

1999 ◽  
Vol 82 (6) ◽  
pp. 3586-3589 ◽  
Author(s):  
Mark D. Gill ◽  
Peter Skorupski

Spontaneous rhythmic motor output of crayfish thoracic ganglia consists of bursts of activity in antagonistic leg motor neurons (MNs), alternating with a rather slow cycle period (typically ≥20 s). The most common pattern (77% of preparations) consists of long coxal promotor bursts, the duration of which was correlated strongly with cycle period, and relatively short remotor bursts independent of cycle period. Octopamine, at a concentration of 2–30 μM reversibly retarded this rhythm, increasing both cycle period and promotor burst duration. Higher concentrations of octopamine inhibited promotor nerve activity and abolished rhythmic bursting. Phentolamine (10–50 μM) had the opposite effect of decreasing cycle period, mainly by decreasing promotor burst duration. Whereas in the presence of octopamine promotor bursts were lengthened and became even more strongly related to cycle period, phentolamine promoted a more symmetrical rhythm with shorter promotor bursts that were less dependent on cycle period. When octopamine was applied in the presence of phentolamine, there was no significant increase in cycle period or burst duration, although high octopamine concentrations (100 μM) were still capable of inhibiting promotor nerve activity. To our knowledge, pharmacological modulation of a spontaneous locomotor rhythm by an amine antagonist (applied by itself) has not been reported previously. The results raise the testable possibility that phentolamine exerts its modulatory effects by acting as an octopamine antagonist in crayfish thoracic ganglia.

1986 ◽  
Vol 55 (4) ◽  
pp. 678-688 ◽  
Author(s):  
K. T. Sillar ◽  
P. Skorupski

A preparation is described in which the thoracic ganglia of the crayfish are isolated together with the thoracocoxal muscle receptor organ (TCMRO) of the fourth leg. This preparation allows intracellular analysis of both centrally generated and reflex activity in leg motor neurons (MNs). The isolated thoracic ganglia can spontaneously generate a rhythmic motor pattern resembling that used during forward walking (Fig. 4). This involves the reciprocal activity of promotor and remotor MNs, with levator MNs firing in phase with promotor bursts. Stretch of the TCMRO in quiescent preparations evokes a resistance reflex in promotor MNs (Fig. 6). In more active preparations the response is variable and often becomes an assistance reflex, with excitation of remotor MNs on stretch (Fig. 7). When rhythmic motor patterns occur, the neuropilar processes of the S and T fibers receive central inputs that are strongly correlated with the oscillatory drive to the MNs and probably have the same origin (Figs. 8 and 9). Central inputs to the S and T fibers occur in opposite phases within a cycle of rhythmic motor output. The S fiber is depolarized in phase with promotor MNs and the T fiber in phase with remotor activity. The input to the T fiber is shown to be a chemical synaptic drive that has a reversal potential approximately 14 mV more depolarized than the fiber's resting membrane potential. This input substantially modulates the amplitude and waveform of passively propagated receptor potentials generated by TCMRO stretch (Fig. 11). It is argued that the central inputs to the TCMRO afferents will modulate proprioceptive feedback resulting from voluntary movements.


1982 ◽  
Vol 99 (1) ◽  
pp. 185-196 ◽  
Author(s):  
J. A. Kahn ◽  
A. Roberts

Rhythmic motor nerve activity was recorded in stage 37/38 Xenopus embryos paralysed with curare. The activity was similar to the swimming motor pattern in the following ways: cycle period (40–125 ms), alternation of activity on either side of a segment, rostro-caudal phase lag. Episodes of rhythmic motor activity could be evoked by stimuli that evoke swimming and inhibited by stimuli that normally inhibit swimming. On this basis we conclude that the swimming motor pattern is generated by a central nervous mechanism and is not dependent on sensory feedback. In addition to the swimming pattern, another pattern of motor activity (‘synchrony’) was sometimes recorded in curarized embryos. In this, the rhythmic bursts on either side of a segment occurred in synchrony, and the rhythm period (20–50 ms) was half that in swimming. This was probably not an artifact of curarization as there were indications of a similar pattern in uncurarized embryos. Its function remains unclear.


1998 ◽  
Vol 79 (5) ◽  
pp. 2316-2328 ◽  
Author(s):  
C. S. Green ◽  
S. R. Soffe

Green, C. S. and S. R. Soffe. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles. J. Neurophysiol. 79: 2316–2328, 1998. We have investigated the effects of ascending inhibitory pathways on two centrally generated rhythmic motor patterns in a simple vertebrate model, the young Xenopus tadpole. Tadpoles swim when touched, but when grasped respond with slower, stronger struggling movements during which the longitudinal pattern of motor activity is reversed. Surgical spinal cord transection to remove all ascending connections originating caudal to the transection (in tadpoles immobilized in α-bungarotoxin) did not affect “fictive” swimming generated more rostrally. In contrast, cycle period and burst duration both significantly increased during fictive struggling. Increases were progressively larger with more rostral transection. Blocking caudal activity with the anesthetic MS222 (pharmacological transection) produced equivalent but reversible effects. Reducing crossed-ascending inhibition selectively, either by midsagittal spinal cord division or rostral cord hemisection (1-sided transection) mimicked the effects of transection. Like transection, both operations increased cycle period and burst duration during struggling but did not affect swimming. The changes during struggling were larger with more rostral hemisection. Reducing crossed-ascending inhibition by spinal hemisection also increased the rostrocaudal longitudinal delay during swimming, and the caudorostral delay during struggling. Weakening inhibition globally with low concentrations of the glycine antagonist strychnine (10–100 nM) did not alter swimming cycle period, burst duration, or longitudinal delay. However, strychnine at 10–60 nM decreased cycle period during struggling. It also increased burst duration in some cases, although burst duration increased as a proportion of cycle period in all cases. Strychnine reduced longitudinal delay during struggling, making rostral and caudal activity more synchronous. At 100 nM, struggling was totally disrupted. By combining our results with a detailed knowledge of tadpole spinal cord anatomy, we conclude that inhibition mediated by the crossed-ascending axons of characterized, glycinergic, commissural interneurons has a major influence on the struggling motor pattern compared with swimming. We suggest that this difference is a consequence of the larger, reversed longitudinal delay and the extended burst duration during struggling compared with swimming.


1998 ◽  
Vol 79 (3) ◽  
pp. 1396-1408 ◽  
Author(s):  
Stefan Clemens ◽  
Denis Combes ◽  
Pierre Meyrand ◽  
John Simmers

Clemens, Stefan, Denis Combes, Pierre Meyrand, and John Simmers. Long-term expression of two interacting motor pattern-generating networks in the stomatogastric system of freely behaving lobster. J. Neurophysiol. 79: 1396–1408, 1998. Rhythmic movements of the gastric mill and pyloric regions of the crustacean foregut are controlled by two stomatogastric neuronal networks that have been intensively studied in vitro. By using electromyographic recordings from the European lobster, Homarus gammarus, we have monitored simultaneously the motor activity of pyloric and gastric mill muscles for ≤3 mo in intact and freely behaving animals. Both pyloric and gastric mill networks are almost continuously active in vivo regardless of the presence of food. In unfed resting animals kept under “natural-like” conditions, the pyloric network expresses the typical triphasic pattern seen in vitro but at considerably slower cycle periods (2.5–3.5 s instead of 1–1.5 s). Gastric mill activity occurs at mean cycle periods of 20–50 s compared with 5–10 s in vitro but may suddenly stop for up to tens of minutes, then restart without any apparent behavioral reason. When conjointly active, the two networks express a strict coupling that involves certain but not all motor neurons of the pyloric network. The posterior pyloric constrictor muscles, innervated by a total of 8 pyloric (PY) motor neurons, are influenced by the onset of each gastric mill medial gastric/lateral gastric(MG/LG) neuron powerstroke burst, and for one cycle, PY neuron bursts may attain >300% of their mean duration. However, the duration of activity in the lateral pyloric constrictor muscle, innervated by the unique lateral pyloric (LP) motor neuron, remains unaffected by this perturbation. During this period after gastric perturbation, LP neuron and PY neurons thus express opposite burst-to-period relationships in that LP neuron burst duration is independent of the ongoing cycle period, whereas PY neuron burst duration changes with period length. In vitro the same type of gastro-pyloric interaction is observed, indicating that it is not dependent on sensory inputs. Moreover, this interaction is intrinsic to the stomatogastric ganglion itself because the relationship between the two networks persists after suppression of descending inputs to the ganglion. Intracellular recordings reveal that thisgastro-pyloric interaction originates from the gastric MG and LG neurons of the gastric network, which inhibit the pyloric pacemaker ensemble. As a consequence, the pyloric PY neurons, which are inhibited by the pyloric dilator (PD) neurons of the pyloric pacemaker group, extend their activity during the time that PD neuron is held silent. Moreover, there is evidence for a pyloro-gastric interaction, apparently rectifying, from the pyloric pacemakers back to the gastric MG/LG neuron group.


2020 ◽  
Vol 124 (3) ◽  
pp. 914-929
Author(s):  
Angela Wenning ◽  
Young Rim Chang ◽  
Brian J. Norris ◽  
Ronald L. Calabrese

Moving blood through the segmented heart tubes of leeches requires sequential constrictions driven by motor neurons controlled by a central pattern generator. In a single heart segment, we varied stimuli to explore the neuromuscular transform. Decreasing the cycle period, e.g., to increase volume pumped over time, without altering motor burst duration and intraburst spike frequency shortens relaxation time and decreases amplitude. The likely strategy to preserve constriction amplitude is to shorten burst duration while increasing spike frequency.


1996 ◽  
Vol 76 (5) ◽  
pp. 3178-3195 ◽  
Author(s):  
R. M. Johnston ◽  
R. B. Levine

1. Larval crawling is a bilaterally symmetrical behavior that involves an anterior moving wave of motor activity in the body wall muscles in conjunction with sequential movements of the abdominal prolegs and thoracic legs. The purpose of this study was to determine whether the larval CNS by itself and without phasic sensory feedback was capable of producing patterned activity associated with crawling. To establish the extent of similarity between the output of the isolated nerve cord and crawling, the motor activity produced in isolated larval nerve cords was compared with the motor activity from freely crawling larvae. 2. When exposed to the muscarinic receptor agonist pilocarpine (1.0 mM), isolated larval nerve cords produced long-lasting rhythmic activity in the motor neurons that supply the thoracic leg, abdominal body wall, and abdominal proleg muscles. The rhythmic activity evoked by pilocarpine was abolished reversibly and completely by bath application of the muscarinic-receptor antagonist atropine (0.01 mM) in conjunction with pilocarpine (1.0 mM), suggesting that the response was mediated by muscarinic-like acetylcholine receptors. 3. Similar to crawling in intact animals, the evoked activity in isolated nerve cords involved bilaterally symmetrical motor activity that progressed from the most posterior abdominal segment to the most anterior thoracic segment. The rhythmic activity in thoracic leg, abdominal proleg, and abdominal body wall motor neurons showed intrasegmental and intersegmental cycle-to-cycle coupling. The average cycle period for rhythmic activity in the isolated nerve cord was approximately 2.5 times slower than the cycle period for crawling in intact larvae, but not more variable. 4. Like crawling in intact animals, in isolated nerve cords, bursting activity in the dorsal body wall motor neurons occurred before activity in ventral/lateral body wall motor neurons within an abdominal segment. The evoked bursting activity recorded from the proleg nerve was superimposed on a high level of tonic activity. 5. In isolated nerve cords, bursts of activity in the thoracic leg levator/extensor motor neurons alternated with bursts of activity in the depressor/flexor motor neurons. The burst duration of the levator/extensor activity was brief and remained relatively steady as cycle period increased. The burst duration of the depressor/ flexor activity occupied the majority of an average cycle and increased as cycle period increased. The phase of both levator/extensor motor nerve activity and depressor/flexor motor nerve activity remained relatively stable over the entire range of cycle periods. The timing and patterning of thoracic leg motor neuron activity in isolated nerve cords quantitatively resembled thoracic leg motor activity in freely crawling larvae. 6. The rhythmic motor activity generated by an isolated larval nerve cord resembled a slower version of normal crawling in intact larvae. Because of the many similarities between activity induced in the isolated nerve cord and the muscle activity and movements of thoracic and abdominal segments during crawling, we concluded that central mechanisms can establish the timing and patterning of the crawling motor pattern and that crawling may reflect the output of a central pattern generating network.


1996 ◽  
Vol 76 (1) ◽  
pp. 93-108 ◽  
Author(s):  
P. Skorupski

1. This paper investigates the effect of octopamine on spontaneous and reflex motor output of crayfish leg motor neurons. Octopamine modulated spontaneous activity, both rhythmic and tonic, and dramatically modulated the pattern of reflex motor output elicited by stimulating identified proprioceptors of the basal limb. 2. Spontaneous reciprocal motor patterns, involving alternating bursts of promotor and remotor motor neuron activity, were reversibly abolished by octopamine. The threshold concentration for this effect was approximately 1 microM. 3. At concentrations greater than approximately 10 microM octopamine inhibited spontaneous promotor nerve activity in both bursting and nonbursting preparations. In some experiments promotor inhibition was correlated with the induction of tonic remotor nerve activity. The EC50 for complete inhibition of promotor nerve activity by octopamine was 20-30 microM. 4. Reflexes mediated by two basal limb proprioceptors, the thoracocoxal muscle receptor organ (TCMRO; which signals leg promotion) and the thoracocoxal chordotonal organ (TCCO; which signals leg remotion) were analyzed in a number of promotor and remotor motor neurons. In both cases assistance reflexes (excitation of promotors by the TCCO and remotors by the TCMRO) were restricted to subgroups of the motor pool. Among remotor motor neurons, the first two units recruited during bursts of spontaneous activity were members of the assistance reflex group (group 1). A third unit, sometimes recruited during more intense spontaneous bursts, was excited by TCCO stimulation and was therefore a member of the resistance reflex group (group 2). Other resistance group remotors were also excited by the TCCO, but this input normally remained subthreshold. 5. Stimulation of the TCCO afferent nerve elicited excitatory postsynaptic potentials (EPSPs) in group 2 (resistance group) remotor motor neurons at a latency compatible with a monosynaptic connection. The same stimulation excited group 1 (assistance group) promotor motor neurons, but at a greater and more variable latency. Thus the remotor resistance reflex from the TCCO is probably monosynaptic, but the promotor assistance reflex, also elicited by TCCO stimulation, is likely to be di- or polysynaptic. Assistance group (group 1) remotor motor neurons are inhibited by mechanical stimulation of the TCCO, or electrical stimulation of its nerve. 6. Octopamine had selective effects on individual remotor units. First, assistance group remotor motor neurons were affected in two ways. One unit was inhibited, so that reflex spiking in response to TCMRO stimulation was abolished. A second unit was not inhibited, but its reflex response mode changed, so that instead of responding to TCMRO input with an assistance reflex, it responded to TCCO input with a resistance reflex. Second, among motor neurons that normally respond to TCCO input with resistance reflexes, these responses were enhanced by octopamine. 7. Promotor motor neurons were inhibited by octopamine and reflex responses were also affected selectively. Responses to TCCO input (assistance reflexes) were abolished; whereas, responses to TCMRO input (resistance reflexes) were relatively less affected. 8. Intracellular recordings revealed that the majority of remotor motor neurons depolarized in the presence of octopamine. In preparations where these could be classified on the basis of TCMRO/ TCCO inputs, all were identified as group 2 (resistance group). A minority of remotor motor neurons were hyperpolarized by octopamine. All of these were identified as group 1 (assistance group), with strong TCMRO input. 9. The majority of promotor motor neurons were depolarized by octopamine. This depolarization was nevertheless inhibitory since it reversed slightly positive to rest and was associated with a substantial fall in inp


1996 ◽  
Vol 76 (5) ◽  
pp. 3535-3549 ◽  
Author(s):  
M. D. Gill ◽  
P. Skorupski

1. We compared the effects of octopamine and serotonin on the activity of crayfish leg motor neurons in an isolated preparation of the 4th thoracic ganglion. Spontaneous activity of leg promotor (swing phase in a forward walking crayfish) and remotor (stance phase) motor neurons consisted either of continuous promotor activity (with the remotor nerve silent) or alternating bursts of promotor and remotor activity. Octopamine and serotonin, at high concentrations (< or = 100 and < or = 20 microM, respectively), abolished spontaneous promotor activity and rhythmic bursting (if ongoing). Both amines induced tonic remotor nerve activity, but each amine activated different identified remotor motor neurons. 2. Reflex responses of remotor motor neurons to stimulation of thoracocoxal (TC) joint proprioceptors were modulated by octopamine and serotonin in characteristic ways. The muscle receptor (TCMRO) that signals joint remotion excited a subset of remotor motor neurons in an assistance reflex. The chordotonal organ (TCCO) that signals joint promotion excited different remotor motor neurons in a resistance reflex. Octopamine abolished assistance reflexes and facilitated resistance reflexes. One assistance group unit was inhibited, whereas reflex reversal was induced in another: this unit was now excited in a resistance reflex, rather than in an assistance reflex. The responses of resistance group remotor units were enhanced. Serotonin had the opposite effect on assistance group remotors: one unit was excited and generated a stronger assistance reflex. The effect of serotonin on resistance group remotor units was similar (but quantitatively different) to that of octopamine. 3. Both octopamine and serotonin modulated spontaneous motor output at concentrations below those required to inhibit promotor nerve activity. Rhythmic promotor and remotor bursting was abolished, and replaced with continuous promotor activity, by serotonin at 1 microM and octopamine at 1–10 microM. In nonbursting preparations, promotor activity could be excited (instead of inhibited) by either amine at lower concentrations. 4. Octopaminergic inhibition of spontaneous promotor activity was antagonized by mianserin (10 microM). Phentolamine at the same concentration was less effective as an antagonist. Serotonergic inhibition of promotor activity was not blocked by mianserin. Mianserin also antagonized inhibitory, but not excitatory, effects of octopamine on remotor reflex responses. Serotonergic modulation of these reflexes was not affected. 5. An intersegmental difference was found in aminergic inhibition of promotor nerve activity. Whereas the effect (at the higher concentrations used) was inhibition of promotor activity from T4, simultaneous recordings from promotor nerves of the more rostral ganglia T3 and T2 showed either promotor excitation, or inhibition that was significantly weaker than in T4. This may relate to the known postural effects of these amines in intact crayfish and lobsters. 6. We conclude that octopamine and serotonin are modulators of segmental reflexes in the crayfish walking system. Each amine “assembles” a unique remotor nerve reflex response from different combinations of remotor units. In the case of octopamine, inhibitory effects are mediated by a mianserin-sensitive receptor, whereas excitatory effects are mediated by a mianserin-insensitive receptor.


1970 ◽  
Vol 53 (3) ◽  
pp. 629-639
Author(s):  
JAMES L. HANEGAN ◽  
JAMES EDWARD HEATH

1. The transition from the warm-up motor pattern to the flight motor pattern in the saturnid moth H. cecropia, is described. 2. The transition from warm-up to flight was found to be dependent on the temperature of the thoracic ganglia. 3. A model to account for the two different motor output patterns and the transition of the warm-up pattern to the flight pattern is proposed.


2014 ◽  
Author(s):  
Erin C. McKiernan

Motor activity, like that producing locomotion, is generated by networks of neurons. At the last output level of these networks are the motor neurons, which send signals to the muscles, causing them to contract. Current research in motor control is focused on finding out how motor neurons contribute to shaping the timing of motor behaviors. Are motor neurons just passive relayers of the signals they receive? Or, do motor neurons shape the signals before passing them on to the muscles, thereby influencing the timing of the behavior? It is now well accepted that motor neurons have active, intrinsic membrane properties - there are ion channels in the cell membrane that allow motor neurons to respond to input in non-linear and diverse ways. However, few direct tests of the role of motor neuron intrinsic properties in shaping motor behavior have been carried out, and many questions remain about the role of specific ion channel genes in motor neuron function. In this study, two potassium channel transgenes were expressed in Drosophila larvae, causing motor neurons to fire at lower levels of current stimulation and at higher frequencies, thereby increasing excitability. Mosaic animals were created in which some identified motor neurons expressed the transgenes while others did not. Motor output underlying crawling was compared in muscles innervated by control and experimental neurons in the same animals. Counterintuitively, no effect of the transgenic manipulation on motor output was seen. Future experiments are outlined to determine how the larval nervous system produces normal motor output in the face of altered motor neuron excitability.


Sign in / Sign up

Export Citation Format

Share Document